diff options
Diffstat (limited to 'ts')
| -rw-r--r-- | ts/n1.lyx | 26 | ||||
| -rw-r--r-- | ts/n2.lyx | 16 | ||||
| -rw-r--r-- | ts/n3.lyx | 22 | ||||
| -rw-r--r-- | ts/n4.lyx | 2 | ||||
| -rw-r--r-- | ts/n6.lyx | 34 | 
5 files changed, 66 insertions, 34 deletions
| @@ -268,7 +268,7 @@ entorno  \end_inset   es un elemento de  -\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$ +\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$  \end_inset  . @@ -459,7 +459,7 @@ abierta   a  \begin_inset Formula   \[ -B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}. +B_{d}(x,\delta):=\{y\in X\mid d(x,y)<\varepsilon\}.  \]  \end_inset @@ -485,7 +485,7 @@ inducida  \end_inset   a la topología  -\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$ +\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$  \end_inset  . @@ -578,7 +578,7 @@ La  -esfera  \series default  ,  -\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ +\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$  \end_inset  . @@ -630,7 +630,7 @@ El  cilindro  \series default  ,  -\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$ +\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$  \end_inset  , cono de rotación sobre el eje  @@ -666,7 +666,7 @@ El  toro  \series default  ,  -\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ +\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$  \end_inset  , cono de rotación sobre el eje  @@ -674,7 +674,7 @@ toro  \end_inset   de  -\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$ +\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}$  \end_inset  . @@ -695,7 +695,7 @@ status open  \end_inset  Tenemos  -\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ +\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$  \end_inset  , luego el cono de rotación es  @@ -1056,7 +1056,7 @@ Como los abiertos en  \end_inset  ,  -\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$ +\begin_inset Formula $s^{-1}((a,b))=\{(x,y)\mid a<s(x,y)=x+y<b\}=\{(x,y)\mid a-x<y<b-x\}$  \end_inset  . @@ -1135,7 +1135,7 @@ Dado  \end_inset  , queremos ver que  -\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$ +\begin_inset Formula $p^{-1}((a,b))=\{(x,y)\mid a<p(x,y)=xy<b\}$  \end_inset   es abierto. @@ -1217,7 +1217,7 @@ Basta ver que, dada una bola  , su inversa es un abierto.   Tenemos  -\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$ +\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$  \end_inset  , pero  @@ -2043,7 +2043,7 @@ topología generada  \end_inset   a  -\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$ +\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$  \end_inset  , y se tiene que  @@ -2456,7 +2456,7 @@ Dada una base  \end_inset   numerable,  -\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$ +\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$  \end_inset   es base de entornos de  @@ -1125,7 +1125,7 @@ Ejemplos de conexión  \begin_layout Enumerate  La hipérbola  -\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}-y^{2}=1\}$ +\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}-y^{2}=1\}$  \end_inset   no es conexa. @@ -1134,11 +1134,11 @@ status open  \begin_layout Plain Layout  Sean  -\begin_inset Formula $U:=\{(x,y):x>0\}$ +\begin_inset Formula $U:=\{(x,y)\mid x>0\}$  \end_inset  ,  -\begin_inset Formula $V:=\{(x,y):x<0\}$ +\begin_inset Formula $V:=\{(x,y)\mid x<0\}$  \end_inset   e  @@ -1150,7 +1150,7 @@ Sean  \end_inset  , luego  -\begin_inset Formula $Y\subseteq U\cap V=\{(x,y):x\neq0\}$ +\begin_inset Formula $Y\subseteq U\cap V=\{(x,y)\mid x\neq0\}$  \end_inset  ;  @@ -1351,7 +1351,7 @@ La función  status open  \begin_layout Plain Layout -\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\neq0\}$ +\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\neq0\}$  \end_inset  , luego existe la función continua  @@ -1372,7 +1372,7 @@ status open  . -\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\in\{-1,1\}\}$ +\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\in\{-1,1\}\}$  \end_inset  , luego  @@ -2393,7 +2393,7 @@ Sea  .   Ahora bien,  -\begin_inset Formula $\{U_{\delta}:=(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$ +\begin_inset Formula $\{U_{\delta}\mid =(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$  \end_inset   es un recubrimiento de  @@ -2750,7 +2750,7 @@ Sea  \end_inset   continua,  -\begin_inset Formula $\text{fix}f:=\{x\in X:f(x)=x\}$ +\begin_inset Formula $\text{fix}f:=\{x\in X\mid f(x)=x\}$  \end_inset   es cerrado en  @@ -309,7 +309,7 @@ Sean  status open  \begin_layout Plain Layout -\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$ +\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$  \end_inset   y  @@ -736,7 +736,7 @@ unión disjunta  \end_inset   son espacios topológicos, definimos la topología  -\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$ +\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$  \end_inset  . @@ -934,7 +934,7 @@ Sea  \end_inset  ,  -\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$ +\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$  \end_inset   lo es de  @@ -947,7 +947,7 @@ Sea  .   Del mismo modo  -\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$ +\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$  \end_inset   admite un subrecubrimiento finito  @@ -1122,11 +1122,11 @@ Sean  \end_inset   disjuntos, y basta tomar  -\begin_inset Formula $\{x:(x,0)\in U\}$ +\begin_inset Formula $\{x\mid (x,0)\in U\}$  \end_inset   y  -\begin_inset Formula $\{x:(x,0)\in V\}$ +\begin_inset Formula $\{x\mid (x,0)\in V\}$  \end_inset  . @@ -1449,7 +1449,7 @@ Dado un abierto  \end_inset  ,  -\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$ +\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$  \end_inset  , que es abierto por la hipótesis. @@ -1479,7 +1479,7 @@ Dado un elemento básico  \end_inset  ,  -\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$ +\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$  \end_inset  , que es abierto. @@ -2269,7 +2269,7 @@ Sean  \end_inset  , sea  -\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$ +\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$  \end_inset  ,  @@ -2360,7 +2360,7 @@ topología cociente  \end_inset   a  -\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$ +\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$  \end_inset  , donde  @@ -2832,7 +2832,7 @@ Si  \end_inset   es Hausdorff si y sólo si  -\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$ +\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$  \end_inset   es cerrado en  @@ -747,7 +747,7 @@ El recíproco no se cumple:  \begin_layout Enumerate  La corona circular  -\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\in[0,1]\}$ +\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}+y^{2}\in[0,1]\}$  \end_inset   es homotópicamente equivalente, pero no homeomorfa, a  @@ -258,7 +258,7 @@ envoltura convexa  ,  \begin_inset Formula   \[ -\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}:\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} . +\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}\;\middle|\;\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .  \]  \end_inset @@ -520,6 +520,22 @@ dimensión  \end_layout  \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard  Ejemplos:  \end_layout @@ -578,6 +594,22 @@ Añadir dibujos.  \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout +  \begin_layout Section  Número de Euler  \end_layout | 
