aboutsummaryrefslogtreecommitdiff
path: root/ts
diff options
context:
space:
mode:
Diffstat (limited to 'ts')
-rw-r--r--ts/n4.lyx46
1 files changed, 41 insertions, 5 deletions
diff --git a/ts/n4.lyx b/ts/n4.lyx
index 47a0c21..52c7efa 100644
--- a/ts/n4.lyx
+++ b/ts/n4.lyx
@@ -1903,16 +1903,52 @@ Si
status open
\begin_layout Plain Layout
-\begin_inset Note Note
-status open
+Si
+\begin_inset Formula $f$
+\end_inset
-\begin_layout Plain Layout
-Demostración.
-\end_layout
+ no es sobreyectiva, existe
+\begin_inset Formula $z_{0}\in\mathbb{S}^{1}$
+\end_inset
+
+ tal que
+\begin_inset Formula $f(\mathbb{S}^{1})\subseteq\mathbb{S}^{1}\setminus\{z_{0}\}\cong(0,1)$
+\end_inset
+
+ con el homomorfismo
+\begin_inset Formula $h:(0,1)\to\mathbb{S}^{1}\setminus\{z_{0}\}$
+\end_inset
+
+ dado por
+\begin_inset Formula $h(t):=e(t+\theta_{0})$
+\end_inset
+, donde
+\begin_inset Formula $e(\theta_{0}):=z_{0}$
+\end_inset
+
+.
+ Por tanto, si
+\begin_inset Formula $\alpha_{f}(s):=f(e(s))$
+\end_inset
+
+, existe un levantamiento de
+\begin_inset Formula $\alpha_{f}$
\end_inset
+ dado por
+\begin_inset Formula $\tilde{\alpha}_{f}(s):=\theta_{0}+h^{-1}(\alpha_{f}(s))$
+\end_inset
+
+, pues
+\begin_inset Formula $e(\tilde{\alpha}_{f}(s))=e(\theta_{0}+e|_{\mathbb{S}^{1}\setminus\{z_{0}\}}^{-1}(\alpha_{f}(s))-\theta_{0})=\alpha_{f}(s)$
+\end_inset
+, pero entonces
+\begin_inset Formula $\tilde{\alpha}_{f}(1)-\tilde{\alpha}_{f}(0)=h^{-1}(\alpha_{f}(1))-h^{-1}(\alpha_{f}(0))\overset{\alpha_{f}(1)=\alpha_{f}(0)}{=}0$
+\end_inset
+
+.
\end_layout
\end_inset