aboutsummaryrefslogtreecommitdiff
path: root/ts
diff options
context:
space:
mode:
Diffstat (limited to 'ts')
-rw-r--r--ts/n1.lyx26
-rw-r--r--ts/n2.lyx16
-rw-r--r--ts/n3.lyx22
-rw-r--r--ts/n4.lyx2
-rw-r--r--ts/n6.lyx34
5 files changed, 66 insertions, 34 deletions
diff --git a/ts/n1.lyx b/ts/n1.lyx
index 8874cc3..4936758 100644
--- a/ts/n1.lyx
+++ b/ts/n1.lyx
@@ -268,7 +268,7 @@ entorno
\end_inset
es un elemento de
-\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$
+\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$
\end_inset
.
@@ -459,7 +459,7 @@ abierta
a
\begin_inset Formula
\[
-B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}.
+B_{d}(x,\delta):=\{y\in X\mid d(x,y)<\varepsilon\}.
\]
\end_inset
@@ -485,7 +485,7 @@ inducida
\end_inset
a la topología
-\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$
+\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$
\end_inset
.
@@ -578,7 +578,7 @@ La
-esfera
\series default
,
-\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
+\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
\end_inset
.
@@ -630,7 +630,7 @@ El
cilindro
\series default
,
-\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$
+\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$
\end_inset
, cono de rotación sobre el eje
@@ -666,7 +666,7 @@ El
toro
\series default
,
-\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
+\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
\end_inset
, cono de rotación sobre el eje
@@ -674,7 +674,7 @@ toro
\end_inset
de
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}$
\end_inset
.
@@ -695,7 +695,7 @@ status open
\end_inset
Tenemos
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
\end_inset
, luego el cono de rotación es
@@ -1056,7 +1056,7 @@ Como los abiertos en
\end_inset
,
-\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$
+\begin_inset Formula $s^{-1}((a,b))=\{(x,y)\mid a<s(x,y)=x+y<b\}=\{(x,y)\mid a-x<y<b-x\}$
\end_inset
.
@@ -1135,7 +1135,7 @@ Dado
\end_inset
, queremos ver que
-\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$
+\begin_inset Formula $p^{-1}((a,b))=\{(x,y)\mid a<p(x,y)=xy<b\}$
\end_inset
es abierto.
@@ -1217,7 +1217,7 @@ Basta ver que, dada una bola
, su inversa es un abierto.
Tenemos
-\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$
+\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$
\end_inset
, pero
@@ -2043,7 +2043,7 @@ topología generada
\end_inset
a
-\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$
+\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$
\end_inset
, y se tiene que
@@ -2456,7 +2456,7 @@ Dada una base
\end_inset
numerable,
-\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$
+\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$
\end_inset
es base de entornos de
diff --git a/ts/n2.lyx b/ts/n2.lyx
index b70277e..583d4b7 100644
--- a/ts/n2.lyx
+++ b/ts/n2.lyx
@@ -1125,7 +1125,7 @@ Ejemplos de conexión
\begin_layout Enumerate
La hipérbola
-\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}-y^{2}=1\}$
+\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}-y^{2}=1\}$
\end_inset
no es conexa.
@@ -1134,11 +1134,11 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $U:=\{(x,y):x>0\}$
+\begin_inset Formula $U:=\{(x,y)\mid x>0\}$
\end_inset
,
-\begin_inset Formula $V:=\{(x,y):x<0\}$
+\begin_inset Formula $V:=\{(x,y)\mid x<0\}$
\end_inset
e
@@ -1150,7 +1150,7 @@ Sean
\end_inset
, luego
-\begin_inset Formula $Y\subseteq U\cap V=\{(x,y):x\neq0\}$
+\begin_inset Formula $Y\subseteq U\cap V=\{(x,y)\mid x\neq0\}$
\end_inset
;
@@ -1351,7 +1351,7 @@ La función
status open
\begin_layout Plain Layout
-\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\neq0\}$
+\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\neq0\}$
\end_inset
, luego existe la función continua
@@ -1372,7 +1372,7 @@ status open
.
-\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\in\{-1,1\}\}$
+\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\in\{-1,1\}\}$
\end_inset
, luego
@@ -2393,7 +2393,7 @@ Sea
.
Ahora bien,
-\begin_inset Formula $\{U_{\delta}:=(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$
+\begin_inset Formula $\{U_{\delta}\mid =(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$
\end_inset
es un recubrimiento de
@@ -2750,7 +2750,7 @@ Sea
\end_inset
continua,
-\begin_inset Formula $\text{fix}f:=\{x\in X:f(x)=x\}$
+\begin_inset Formula $\text{fix}f:=\{x\in X\mid f(x)=x\}$
\end_inset
es cerrado en
diff --git a/ts/n3.lyx b/ts/n3.lyx
index 5674436..8443b38 100644
--- a/ts/n3.lyx
+++ b/ts/n3.lyx
@@ -309,7 +309,7 @@ Sean
status open
\begin_layout Plain Layout
-\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$
+\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$
\end_inset
y
@@ -736,7 +736,7 @@ unión disjunta
\end_inset
son espacios topológicos, definimos la topología
-\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$
+\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$
\end_inset
.
@@ -934,7 +934,7 @@ Sea
\end_inset
,
-\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$
+\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$
\end_inset
lo es de
@@ -947,7 +947,7 @@ Sea
.
Del mismo modo
-\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$
+\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$
\end_inset
admite un subrecubrimiento finito
@@ -1122,11 +1122,11 @@ Sean
\end_inset
disjuntos, y basta tomar
-\begin_inset Formula $\{x:(x,0)\in U\}$
+\begin_inset Formula $\{x\mid (x,0)\in U\}$
\end_inset
y
-\begin_inset Formula $\{x:(x,0)\in V\}$
+\begin_inset Formula $\{x\mid (x,0)\in V\}$
\end_inset
.
@@ -1449,7 +1449,7 @@ Dado un abierto
\end_inset
,
-\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$
+\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$
\end_inset
, que es abierto por la hipótesis.
@@ -1479,7 +1479,7 @@ Dado un elemento básico
\end_inset
,
-\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
+\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
\end_inset
, que es abierto.
@@ -2269,7 +2269,7 @@ Sean
\end_inset
, sea
-\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$
+\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$
\end_inset
,
@@ -2360,7 +2360,7 @@ topología cociente
\end_inset
a
-\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$
+\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$
\end_inset
, donde
@@ -2832,7 +2832,7 @@ Si
\end_inset
es Hausdorff si y sólo si
-\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$
+\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$
\end_inset
es cerrado en
diff --git a/ts/n4.lyx b/ts/n4.lyx
index c315d68..3a63435 100644
--- a/ts/n4.lyx
+++ b/ts/n4.lyx
@@ -747,7 +747,7 @@ El recíproco no se cumple:
\begin_layout Enumerate
La corona circular
-\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\in[0,1]\}$
+\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}+y^{2}\in[0,1]\}$
\end_inset
es homotópicamente equivalente, pero no homeomorfa, a
diff --git a/ts/n6.lyx b/ts/n6.lyx
index d2acc6e..c61ae70 100644
--- a/ts/n6.lyx
+++ b/ts/n6.lyx
@@ -258,7 +258,7 @@ envoltura convexa
,
\begin_inset Formula
\[
-\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}:\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .
+\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}\;\middle|\;\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .
\]
\end_inset
@@ -520,6 +520,22 @@ dimensión
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Ejemplos:
\end_layout
@@ -578,6 +594,22 @@ Añadir dibujos.
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Número de Euler
\end_layout