From 4eb4cc069454b1c36fd3a9044615bae4df8338de Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Tue, 5 Jan 2021 21:57:03 +0100 Subject: RungeKutta --- mne/n.lyx | 26 ++++ mne/n2.lyx | 446 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++----- 2 files changed, 442 insertions(+), 30 deletions(-) diff --git a/mne/n.lyx b/mne/n.lyx index fbb3a6b..9a9e5d7 100644 --- a/mne/n.lyx +++ b/mne/n.lyx @@ -140,6 +140,32 @@ F. Notas de clase. \end_layout +\begin_layout Itemize + +\lang english +Wikipedia, the Free Encyclopedia +\lang spanish + ( +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://en.wikipedia.org/ +\end_layout + +\end_inset + +). + +\emph on +\lang english +Runge-Kutta methods +\emph default +\lang spanish +. +\end_layout + \begin_layout Chapter Introducción \end_layout diff --git a/mne/n2.lyx b/mne/n2.lyx index 398617c..8442b0d 100644 --- a/mne/n2.lyx +++ b/mne/n2.lyx @@ -469,34 +469,6 @@ Como Métodos de Taylor \end_layout -\begin_layout Standard -Dado un método de paso fijo de la forma -\begin_inset Formula $\omega_{0}:=\alpha$ -\end_inset - -, -\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$ -\end_inset - -, llamamos -\series bold -error local de truncamiento -\series default - en -\begin_inset Formula $i\in\{1,\dots,n\}$ -\end_inset - - a -\begin_inset Formula -\[ -\tau_{i}(h):=\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i-1},x_{i-1}). -\] - -\end_inset - - -\end_layout - \begin_layout Standard El \series bold @@ -534,13 +506,41 @@ donde . Por ejemplo, \begin_inset Formula +\begin{align*} +f'(t_{i}) & =\ddot{x}(t_{i})=\frac{\partial f}{\partial t}(t,x(t))+\frac{\partial f}{\partial x}(t,x(t))\dot{x}(t)=\frac{\partial f}{\partial t}(t_{i},\omega_{i})+\frac{\partial f}{\partial x}(t_{i},\omega_{i})f(t_{i},\omega_{i}), +\end{align*} + +\end_inset + +El método de Euler es el método de Taylor de orden 1. +\end_layout + +\begin_layout Standard +Dado un método de paso fijo de la forma +\begin_inset Formula $\omega_{0}:=\alpha$ +\end_inset + +, +\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$ +\end_inset + +, llamamos +\series bold +error local de truncamiento +\series default + en +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + + a +\begin_inset Formula \[ -f'(t_{i})=\ddot{x}(t_{i})=\frac{\partial f}{\partial t}(t,x(t))+\frac{\partial f}{\partial x}(t,x(t))\dot{x}(t)=\frac{\partial f}{\partial t}(t_{i},\omega_{i})+\frac{\partial f}{\partial x}(t_{i},\omega_{i})f(t_{i},\omega_{i}). +\tau_{i}(h):=\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i-1},x_{i-1}). \] \end_inset -El método de Euler es el método de Taylor de orden 1. + \end_layout \begin_layout Standard @@ -604,5 +604,391 @@ pero . \end_layout +\begin_layout Standard +Decimos que un método de paso fijo es de orden +\begin_inset Formula $p$ +\end_inset + + si su error local de truncamiento con +\begin_inset Formula $f\in{\cal C}^{\infty}$ +\end_inset + + es +\begin_inset Formula $O(h^{p})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Métodos de Runge-Kutta +\end_layout + +\begin_layout Standard +Los métodos de Taylor tienen mucha precisión, pero requieren trabajo previo + y son difíciles de reutilizar, por lo que intentamos +\begin_inset Quotes cld +\end_inset + +imitar +\begin_inset Quotes crd +\end_inset + + la precisión de estos con operaciones que no requieran derivar +\begin_inset Formula $f$ +\end_inset + +. + Los +\series bold +métodos de Runge-Kutta +\series default + tienen la forma +\begin_inset Formula +\begin{align*} +\omega_{i+1} & :=\omega_{i}+h\sum_{j=1}^{s}b_{j}k_{j}, & k_{1} & :=f(t_{i},\omega_{i}), & k_{j>1} & :=(t_{i}+c_{j}h,\omega_{i}+h(a_{j,1}k_{1}+\dots+a_{j,j-1}k_{j-1})), +\end{align*} + +\end_inset + +para ciertos +\begin_inset Formula $s\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $(a_{ij})_{1\leq j + + + + + + + + +\begin_inset Text + +\begin_layout Plain Layout +Evaluaciones ( +\begin_inset Formula $s$ +\end_inset + +) +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\leq4$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +5–7 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +8–9 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\geq10$ +\end_inset + + +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +Mejor orden +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s-1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s-2$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s-3$ +\end_inset + + +\end_layout + +\end_inset + + + + +\end_inset + + +\end_layout + \end_body \end_document -- cgit v1.2.3