From c2d7895721d5100280efb6c3644ec22598dce84e Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Tue, 12 Jan 2021 15:40:20 +0100 Subject: Grafos tema 4 --- graf/n.lyx | 5 +- graf/n4.lyx | 391 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 395 insertions(+), 1 deletion(-) diff --git a/graf/n.lyx b/graf/n.lyx index 56e4ca8..1c55080 100644 --- a/graf/n.lyx +++ b/graf/n.lyx @@ -169,7 +169,10 @@ https://en.wikipedia.org/ \lang english Borůvka's algorithm \emph default -\lang spanish +, +\emph on +Christofides algorithm +\emph default . \end_layout diff --git a/graf/n4.lyx b/graf/n4.lyx index e84afd8..ec6340b 100644 --- a/graf/n4.lyx +++ b/graf/n4.lyx @@ -1668,10 +1668,401 @@ hamiltoniano \series default si contiene a todos los vértices. Un grafo es hamiltoniano si admite un ciclo hamiltoniano. +\end_layout + +\begin_layout Standard +El +\series bold +grafo clausura +\series default + de +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $[G]$ +\end_inset + +, es el grafo resultante de añadir a +\begin_inset Formula $G$ +\end_inset + + los +\begin_inset Formula $(u,v)\in E^{\complement}$ +\end_inset + + con +\begin_inset Formula $o(u)+o(v)\geq|V|$ +\end_inset + + hasta que no quede ningún +\begin_inset Formula $(u,v)\in E^{\complement}$ +\end_inset + + que cumpla la condición. + Como +\series bold +teorema +\series default +, +\begin_inset Formula $G$ +\end_inset + + es hamiltoniano si y sólo si lo es +\begin_inset Formula $[G]$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Trivial. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $G$ +\end_inset + + no fuera hamiltoniano y, para obtener +\begin_inset Formula $[G]$ +\end_inset + +, le hubiéramos añadido los ejes +\begin_inset Formula $e_{1},\dots,e_{n}$ +\end_inset + + en ese orden, existiría un +\begin_inset Formula $e_{k}=:(u,v)$ +\end_inset + + tal que +\begin_inset Formula $G_{i}:=(V,E_{i}):=G+\{e_{1},\dots,e_{i}\}$ +\end_inset + + es hamiltoniano si y sólo si +\begin_inset Formula $i>k$ +\end_inset + +, por lo que existe un camino hamiltoniano +\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}:=v)$ +\end_inset + + en +\begin_inset Formula $G_{k}$ +\end_inset + +, con +\begin_inset Formula $n:=|V|$ +\end_inset + +. + Sean ahora +\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}:(u_{i},v)\in E_{k}\}$ +\end_inset + + e +\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}:(u_{i+1},u)\in E_{k}\}$ +\end_inset + +, se tiene +\begin_inset Formula $|X|=o(u)-1$ +\end_inset + + e +\begin_inset Formula $|Y|=o(v)-1$ +\end_inset + +, pero como +\begin_inset Formula $o(u)+o(v)\geq n$ +\end_inset + + en +\begin_inset Formula $G_{k}$ +\end_inset + +, +\begin_inset Formula $|X|+|Y|=o(u)+o(v)\geq n-2>n-1=|\{2,\dots,n-2\}|$ +\end_inset + + y existe +\begin_inset Formula $j\in X\cap Y$ +\end_inset + +, con lo que +\begin_inset Formula $u_{1}u_{k}u_{k+1}\cdots u_{n}u_{k-1}u_{k-2}\cdots u_{1}$ +\end_inset + + es un ciclo hamiltoniano en +\begin_inset Formula $G_{j}\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Una +\series bold +sucesión hamiltoniana +\series default + es una tupla +\begin_inset Formula $(a_{1},\dots,a_{n})$ +\end_inset + + de naturales tal que todo grafo +\begin_inset Formula $(\{1,\dots,n\},E)$ +\end_inset + + con +\begin_inset Formula $o(1)\leq\dots\leq o(n)$ +\end_inset + + y +\begin_inset Formula $o(i)\geq a_{i}$ +\end_inset + + para cada +\begin_inset Formula $i$ +\end_inset + + es hamiltoniano. + Como +\series bold +teorema +\series default +, para +\begin_inset Formula $n\geq3$ +\end_inset + +, +\begin_inset Formula $(a_{1},\dots,a_{n})$ +\end_inset + + con +\begin_inset Formula $a_{1}\leq\dots\leq a_{n}