From b95397e214010cd9ba0da24b951145341e9949c9 Mon Sep 17 00:00:00 2001 From: Juan Marin Noguera Date: Fri, 13 Jan 2023 18:02:06 +0100 Subject: Teorema de Radon-Nikodym --- af/n.lyx | 52 +++++++++++++++ af/n1.lyx | 216 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 268 insertions(+) (limited to 'af') diff --git a/af/n.lyx b/af/n.lyx index c1973dc..e9e8674 100644 --- a/af/n.lyx +++ b/af/n.lyx @@ -256,6 +256,58 @@ Applied Partial Differential Equations with Fourier Series and Boundary 165. \end_layout +\begin_layout Itemize +Ziosilvio. + +\emph on +\lang english +Proof of Radon-Nikodym theorem +\emph default +\lang spanish + (2013). + Recuperado de +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://www.planetmath.org/proofofradonnikodymtheorem +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\lang english +Wikipedia, the Free Encyclopedia. + +\emph on + +\begin_inset Formula $\sigma$ +\end_inset + +-finite measure +\emph default +. + +\lang spanish + Recuperado de +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://en.wikipedia.org/wiki/%CE%A3-finite_measure +\end_layout + +\end_inset + + el 13 de enero de 2023. +\end_layout + \begin_layout Chapter Espacios de Hilbert \end_layout diff --git a/af/n1.lyx b/af/n1.lyx index dc624d5..bdf50e4 100644 --- a/af/n1.lyx +++ b/af/n1.lyx @@ -7143,6 +7143,222 @@ En particular, dado un espacio vectorial . \end_layout +\begin_layout Standard +Dado un espacio medible +\begin_inset Formula $(\Omega,\Sigma)$ +\end_inset + + con medidas +\begin_inset Formula $\mu$ +\end_inset + + y +\begin_inset Formula $\nu$ +\end_inset + +, +\begin_inset Formula $\nu$ +\end_inset + + es +\series bold +absolutamente continua +\series default + respecto de +\begin_inset Formula $\mu$ +\end_inset + + si +\begin_inset Formula $\forall A\in\Sigma,(\mu(A)=0\implies\nu(A)=0)$ +\end_inset + +, y es +\series bold +finita +\series default + si +\begin_inset Formula $\nu(\Omega)<\infty$ +\end_inset + +. + +\series bold +Teorema de Radon-Nicodym: +\series default + Si +\begin_inset Formula $(\Omega,\Sigma)$ +\end_inset + + es un espacio medible con medidas finitas +\begin_inset Formula $\mu$ +\end_inset + + y +\begin_inset Formula $\nu$ +\end_inset + + siendo +\begin_inset Formula $\nu$ +\end_inset + + absolutamente continua respecto de +\begin_inset Formula $\mu$ +\end_inset + +, existe +\begin_inset Formula $g:\Omega\to[0,+\infty]$ +\end_inset + + +\begin_inset Formula $\mu$ +\end_inset + +-integrable tal que +\begin_inset Formula +\[ +\forall A\in\Sigma,\nu(A)=\int_{A}g\dif\mu. +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $\sigma\coloneqq\mu+\nu$ +\end_inset + + es una medida finita en +\begin_inset Formula $X$ +\end_inset + + tal que +\begin_inset Formula $\forall A\in\Sigma,(\sigma(A)=0\iff\mu(A)=0)$ +\end_inset + +, y la función lineal entre espacios de Hilbert +\begin_inset Formula $T:L^{2}(\Omega,\Sigma,\sigma)\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +Tu\coloneqq\int_{\Omega}u\dif\mu +\] + +\end_inset + +está bien definida y es continua porque, si +\begin_inset Formula $\Vert u\Vert_{L^{2}(\Omega,\Sigma,\sigma)}=1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +|Tu| & =\left|\int_{\Omega}u\dif\mu\right|\leq\int_{\Omega}|u|\dif\mu\leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu}+\sqrt{\int_{\Omega}\dif\mu}\leq\\ + & \leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu+\int_{\Omega}|u|^{2}\dif\nu}+\sqrt{\int_{\Omega}\dif\mu+\int_{\Omega}\dif\nu}=1+\sqrt{\sigma(X)}. +\end{align*} + +\end_inset + +Por el teorema de representación de Riesz, existe +\begin_inset Formula $f\in L^{2}(\Omega,\Sigma,\sigma)$ +\end_inset + + tal que, para +\begin_inset Formula $u\in L^{2}(\Omega,\Sigma,\sigma)$ +\end_inset + +, +\begin_inset Formula +\[ +Tu=\int_{\Omega}u\dif\mu=\int_{\Omega}uf\dif\sigma, +\] + +\end_inset + +pero esta igualdad se da para cuando +\begin_inset Formula $u=\chi_{A}$ +\end_inset + + para cualquier +\begin_inset Formula $A\in{\cal F}$ +\end_inset + + y por linealidad para cualquier función +\begin_inset Formula $\Sigma$ +\end_inset + +-medible simple, y por el teorema de convergencia dominada también se da + para cualquier función +\begin_inset Formula $\Sigma$ +\end_inset + +-medible no negativa en casi todo punto. + Además, para +\begin_inset Formula $A\in\Sigma$ +\end_inset + +, +\begin_inset Formula +\[ +\mu(A)=\int_{\Omega}\chi_{A}f\dif\sigma=\int_{A}f\dif\sigma, +\] + +\end_inset + +de modo que +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $\Sigma$ +\end_inset + +-medible y, haciendo +\begin_inset Formula $A=\{x\mid f(x)\leq0\}$ +\end_inset + + o +\begin_inset Formula $A=\{x\mid f(x)>1\}$ +\end_inset + +, vemos que +\begin_inset Formula $f(\omega)\in(0,1]$ +\end_inset + + para casi todo +\begin_inset Formula $\omega\in\Omega$ +\end_inset + +, de modo que +\begin_inset Formula $\frac{1}{g}$ +\end_inset + + es +\begin_inset Formula $\Sigma$ +\end_inset + +-medible no negativa en casi todo punto y, en casi todo punto, +\begin_inset Formula $\frac{1}{f}f=1$ +\end_inset + +, con lo que para +\begin_inset Formula $A\in\Sigma$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{A}\frac{1}{f}\dif\mu=\int_{A}\dif\sigma\implies\nu(A)=\sigma(A)-\mu(A)=\int_{A}\left(\frac{1}{f}-1\right)\dif\mu\eqqcolon\int_{A}g\dif\mu. +\] + +\end_inset + + +\end_layout + \begin_layout Section Problemas variacionales cuadráticos \end_layout -- cgit v1.2.3