From 29eb708670963c0ca5bd315c83a3cec8dafef1a7 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Thu, 20 Feb 2020 13:15:34 +0100 Subject: Commit inicial, primer cuatrimestre. --- algl/n4.lyx | 1759 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1759 insertions(+) create mode 100644 algl/n4.lyx (limited to 'algl/n4.lyx') diff --git a/algl/n4.lyx b/algl/n4.lyx new file mode 100644 index 0000000..cf26416 --- /dev/null +++ b/algl/n4.lyx @@ -0,0 +1,1759 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Determinante de una matriz. + Propiedades +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:U_{1}\times\dots\times U_{n}\rightarrow V$ +\end_inset + + es una +\series bold +aplicación multilineal +\series default + si es lineal en cada una de las +\begin_inset Formula $n$ +\end_inset + + variables, es decir, si +\begin_inset Formula +\[ +f(u_{1},\dots,\alpha u_{i}+\beta u_{i}^{\prime},\dots,u_{n})=\alpha f(u_{1},\dots,u_{i},\dots,u_{n})+\beta f(u_{1},\dots,u_{i}^{\prime},\dots,u_{n}) +\] + +\end_inset + +Una aplicación multilineal +\begin_inset Formula $f:U^{n}\rightarrow V$ +\end_inset + + se llama +\series bold +aplicación +\begin_inset Formula $n$ +\end_inset + +-lineal +\series default +. + Si además +\begin_inset Formula $V=K$ +\end_inset + + es una +\series bold +forma +\begin_inset Formula $n$ +\end_inset + +-lineal +\series default +. + Una forma +\begin_inset Formula $n$ +\end_inset + +-lineal +\begin_inset Formula $f:U^{n}\rightarrow K$ +\end_inset + + es +\series bold +alternada +\series default + si se anula en cada +\begin_inset Formula $n$ +\end_inset + +-upla con dos componentes iguales, es decir, tal que +\begin_inset Formula $f(u_{1},\dots,u_{k},\dots,u_{l},\dots,u_{n})=0$ +\end_inset + + cuando +\begin_inset Formula $u_{k}=u_{l}$ +\end_inset + + (con +\begin_inset Formula $k\neq l$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Una +\series bold +aplicación determinante +\series default + +\begin_inset Formula $\det:M_{n}(K)\rightarrow K$ +\end_inset + + es una forma +\begin_inset Formula $n$ +\end_inset + +-lineal alternada que a cada matriz cuadrada +\begin_inset Formula $A$ +\end_inset + + le asigna un escalar, llamado +\series bold +determinante +\series default + de +\begin_inset Formula $A$ +\end_inset + +, que denotamos +\begin_inset Formula $\det(A)$ +\end_inset + +, +\begin_inset Formula $|A|$ +\end_inset + + o +\begin_inset Formula $\det(A_{1},\dots,A_{n})$ +\end_inset + + (donde +\begin_inset Formula $A_{i}$ +\end_inset + + son las columnas de +\begin_inset Formula $A$ +\end_inset + +), tal que +\begin_inset Formula $|I_{n}|=1$ +\end_inset + +. + Algunas aplicaciones determinantes son: +\end_layout + +\begin_layout Enumerate +La aplicación +\begin_inset Formula $||:M_{2}(K)\rightarrow K$ +\end_inset + + dada por +\begin_inset Formula +\[ +\left|\begin{array}{cc} +a_{11} & a_{12}\\ +a_{21} & a_{22} +\end{array}\right|=a_{11}a_{22}-a_{12}a_{21} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +La +\series bold +regla de Sarrus +\series default +, aplicación +\begin_inset Formula $||:M_{3}(K)\rightarrow K$ +\end_inset + + dada por +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +a_{11} & a_{12} & a_{13}\\ +a_{21} & a_{22} & a_{23}\\ +a_{31} & a_{32} & a_{33} +\end{array}\right|=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Las aplicaciones determinantes verifican que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\left|\begin{array}{cccc} +a_{1} & 0 & \cdots & 0\\ +0 & a_{2} & \cdots & 0\\ +\vdots & \vdots & \ddots & \vdots\\ +0 & 0 & \cdots & a_{n} +\end{array}\right|=a_{1}a_{2}\cdots a_{n} +\] + +\end_inset + +Si +\begin_inset Formula $\{e_{1},\dots,e_{n}\}$ +\end_inset + + es la base canónica de +\begin_inset Formula $K^{n}$ +\end_inset + +, +\begin_inset Formula +\[ +\left|\begin{array}{cccc} +a_{1} & 0 & \cdots & 0\\ +0 & a_{2} & \cdots & 0\\ +\vdots & \vdots & \ddots & \vdots\\ +0 & 0 & \cdots & a_{n} +\end{array}\right|=\det(a_{1}e_{1},\dots,a_{n}e_{n})=a_{1}\cdots a_{n}\det(e_{1},\dots,e_{n})=a_{1}\cdots a_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + tiene una columna nula entonces +\begin_inset Formula $\det(A)=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $A_{i}=0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\begin{array}{c} +\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n})=\det(A_{1},\dots,A_{i-1},0+0,A_{i+1},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n})+\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n}) +\end{array} +\] + +\end_inset + +luego +\begin_inset Formula $\det A=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Al intercambiar dos columnas, el determinante cambia de signo. +\begin_inset Formula +\[ +\begin{array}{c} +0=\det(A_{1},\dots,A_{i}+A_{j},\dots,A_{i}+A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{i},\dots,A_{n})+\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\\ ++\det(A_{1},\dots,A_{j},\dots,A_{i},\dots,A_{n})+\det(A_{1},\dots,A_{j},\dots,A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\det(A_{1},\dots,A_{j},\dots,A_{i},\dots,A_{n}) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si a una columna se le añade otra multiplicada por un escalar, el determinante + no varía. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +\begin{array}{c} +\det(A_{1},\dots,A_{i}+\alpha A_{j},\dots,A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\alpha\det(A_{1},\dots,A_{j},\dots,A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n}) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si las columnas de una matriz cuadrada son linealmente dependientes, su + determinante es 0. + Por tanto una matriz no invertible tiene determinante 0. +\begin_inset Newline newline +\end_inset + +Habrá una columna que será combinación lineal del resto: +\begin_inset Formula $A_{k}=\sum_{j\neq k}\alpha_{j}A_{j}$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +\begin{array}{c} +\det(A_{1},\dots,A_{k},\dots,A_{n})=\det(A_{1},\dots,\sum_{j\neq k}\alpha_{j}A_{j},\dots,A_{n})=\\ +=\sum_{j\neq k}\alpha_{j}\det(A_{1},\dots,A_{j},\dots,A_{n})=0 +\end{array} +\] + +\end_inset + +Ya que cada matriz del último sumatorio tiene dos columnas iguales. +\end_layout + +\begin_layout Standard +De aquí podemos deducir que +\begin_inset Formula $|E_{n}(i,j)|=-1$ +\end_inset + +, +\begin_inset Formula $|E_{n}(\alpha[i])|=\alpha$ +\end_inset + + y +\begin_inset Formula $|E_{n}([i]+\alpha[j])|=1$ +\end_inset + +, y que si +\begin_inset Formula $A,E\in M_{n}(K)$ +\end_inset + +, siendo +\begin_inset Formula $E$ +\end_inset + + una matriz elemental, entonces +\begin_inset Formula $|AE|=|A||E|$ +\end_inset + +. + Se deducen los siguientes teoremas: +\end_layout + +\begin_layout Enumerate +Una matriz cuadrada +\begin_inset Formula $A$ +\end_inset + + es invertible si y sólo si +\begin_inset Formula $|A|\neq0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Toda matriz invertible es producto de matrices elementales, y por lo anterior, + +\begin_inset Formula $|A|=|I_{n}E_{1}\cdots E_{k}|=|I_{n}||E_{1}|\cdots|E_{k}|=|E_{1}|\cdots|E_{k}|$ +\end_inset + +. + Como ninguno de los factores es nulo, se tiene que +\begin_inset Formula $|A|\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Inmediato de la última propiedad. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A,B\in M_{n}(K)$ +\end_inset + +, entonces +\begin_inset Formula $|AB|=|A||B|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si alguna de las dos no es invertible, su producto tampoco (pues si lo fuera, + +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + serían invertibles). + En tal caso, +\begin_inset Formula $|AB|=0=|A||B|$ +\end_inset + +. + Si son ambas invertibles, existen matrices elementales +\begin_inset Formula $E_{1},\dots,E_{k}$ +\end_inset + + con +\begin_inset Formula $B=E_{1}\cdots E_{k}$ +\end_inset + +, por lo que +\begin_inset Formula $|AB|=|AE_{1}\cdots E_{k}|=|A||E_{1}|\cdots|E_{k}|=|A||B|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí tenemos que +\begin_inset Formula $|A^{-1}|=|A|^{-1}$ +\end_inset + +, pues +\begin_inset Formula $1=|I_{n}|=|AA^{-1}|=|A||A^{-1}|$ +\end_inset + +. + Tenemos también que la aplicación determinante es única, pues +\begin_inset Formula $\det(A)=0$ +\end_inset + + para matrices no invertibles y +\begin_inset Formula $\det(A)=|E_{1}|\cdots|E_{k}|$ +\end_inset + + para aquellas que sí lo son, y podemos entonces comprobar que esta operación + está bien definida. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + +\begin_inset Formula $|A^{t}|=|A|$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A$ +\end_inset + + no es invertible, +\begin_inset Formula $A^{t}$ +\end_inset + + tampoco, por lo que +\begin_inset Formula $|A^{t}|=0=|A|$ +\end_inset + +. + Si lo es, existen +\begin_inset Formula $E_{1},\dots,E_{k}$ +\end_inset + + con +\begin_inset Formula $A=E_{1}\cdots E_{k}$ +\end_inset + +, por lo que +\begin_inset Formula $|A^{t}|=|(E_{1}\cdots E_{k})^{t}|=|E_{k}^{t}\cdots E_{1}^{t}|=|E_{k}^{t}|\cdots|E_{1}^{t}|=|E_{1}|\cdots|E_{k}|=|E_{1}\cdots E_{k}|=|A|$ +\end_inset + +. + Esto significa que todo lo relativo a determinantes que se diga para columnas + también es válido para filas. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A=(a_{ij})\in M_{n}(K)$ +\end_inset + + e +\begin_inset Formula $i,j\in\{1,\dots,n\}$ +\end_inset + +, llamamos +\series bold +menor complementario +\series default + del elemento +\begin_inset Formula $a_{ij}$ +\end_inset + + al determinante +\begin_inset Formula $|A_{ij}|$ +\end_inset + + de la matriz +\begin_inset Formula $A_{ij}\in M_{n-1}(K)$ +\end_inset + + resultado de eliminar la fila +\begin_inset Formula $i$ +\end_inset + + y la columna +\begin_inset Formula $j$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +. + Llamamos +\series bold +adjunto +\series default + de +\begin_inset Formula $a_{ij}$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + al escalar +\begin_inset Formula $\Delta_{ij}:=(-1)^{i+j}|A_{ij}|$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Las aplicaciones +\begin_inset Formula $||:M_{n}(K)\rightarrow K$ +\end_inset + + definidas para +\begin_inset Formula $n=1$ +\end_inset + + como +\begin_inset Formula $|(a)|=a$ +\end_inset + + y para +\begin_inset Formula $n>1$ +\end_inset + + como +\begin_inset Formula $|(a_{ij})|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}$ +\end_inset + + son aplicaciones determinante. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n=1$ +\end_inset + + es trivial. + Ahora supongamos que la aplicación determinante está definida para +\begin_inset Formula $n-1$ +\end_inset + + y probamos que se cumplen las condiciones para +\begin_inset Formula $n-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Multilineal: Sea +\begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{n})\in M_{n}(K)$ +\end_inset + + y +\begin_inset Formula $A^{\prime}=(a_{ij}^{\prime})=(A_{1},\dots,\alpha A_{k},\dots,A_{n})$ +\end_inset + +. + Entonces +\begin_inset Formula $a_{ik}^{\prime}=\alpha a_{ik}$ +\end_inset + + y para +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $a_{ij}^{\prime}=a_{ij}$ +\end_inset + +. + Si llamamos +\begin_inset Formula $\Delta_{ij}$ +\end_inset + + y +\begin_inset Formula $\Delta_{ij}^{\prime}$ +\end_inset + + a los correspondientes adjuntos, +\begin_inset Formula $\Delta_{ik}^{\prime}=\Delta_{ik}$ +\end_inset + + y para +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $\Delta_{ij}^{\prime}=\alpha\Delta_{ij}$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +\begin{array}{c} +|A^{\prime}|=a_{11}^{\prime}\Delta_{11}^{\prime}+\dots+a_{1n}^{\prime}\Delta_{1n}^{\prime}=\\ +=a_{11}\alpha\Delta_{11}+\dots+a_{1(k-1)}\alpha\Delta_{1(k-1)}+\alpha a_{1k}\Delta_{ik}+a_{1(k+1)}\alpha\Delta_{i(k+1)}+\dots+a_{1n}\alpha\Delta_{in}=\\ +=\alpha(a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n})=\alpha|A| +\end{array} +\] + +\end_inset + +Del mismo modo, sea +\begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{k}^{\prime}+A_{k}^{\prime\prime},\dots,A_{n})$ +\end_inset + + y sean +\begin_inset Formula $A^{\prime}=(a_{ij}^{\prime})=(A_{1},\dots,A_{k}^{\prime},\dots,A_{n})$ +\end_inset + + y +\begin_inset Formula $A^{\prime\prime}=(a_{ij}^{\prime\prime})=(A_{1},\dots,A_{k}^{\prime\prime},\dots,A_{n})$ +\end_inset + +. + Entonces +\begin_inset Formula $a_{ik}=a_{ik}^{\prime}+a_{ik}^{\prime\prime}$ +\end_inset + + y si +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ +\end_inset + +. + Del mismo modo, +\begin_inset Formula $\Delta_{ik}=\Delta_{ik}^{\prime}=\Delta_{ik}^{\prime\prime}$ +\end_inset + + y si +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $\Delta_{ij}=\Delta_{ij}^{\prime}+\Delta_{ij}^{\prime\prime}$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\begin{array}{c} +|A|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}=\\ +=a_{11}(\Delta_{11}^{\prime}+\Delta_{11}^{\prime\prime})+\dots+a_{1(k-1)}(\Delta_{1(k-1)}^{\prime}+\Delta_{1(k-1)}^{\prime\prime})+(a_{1k}^{\prime}+a_{1k}^{\prime\prime})\Delta_{1k}+\\ ++a_{1(k+1)}(\Delta_{1(k+1)}^{\prime}+\Delta_{1(k+1)}^{\prime\prime})+\dots+a_{1n}(\Delta_{1n}^{\prime}+\Delta_{1n}^{\prime\prime})=\\ +=a_{11}^{\prime}\Delta_{11}^{\prime}+\dots+a_{1n}\Delta_{1n}^{\prime}+a_{11}^{\prime\prime}\Delta_{11}^{\prime\prime}+\dots+a_{1n}\Delta_{1n}^{\prime\prime}=|A^{\prime}|+|A^{\prime\prime}| +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Alternada: Sea +\begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{n})\in M_{n}(K)$ +\end_inset + +. + Si para +\begin_inset Formula $r