From c34b47089a133e58032fe4ea52f61efacaf5f548 Mon Sep 17 00:00:00 2001 From: Juan Marin Noguera Date: Sun, 4 Dec 2022 22:49:17 +0100 Subject: Oops --- cyn/n2.lyx | 2 +- cyn/n5.lyx | 6 +++--- cyn/n7.lyx | 10 +++++----- cyn/n8.lyx | 2 +- 4 files changed, 10 insertions(+), 10 deletions(-) (limited to 'cyn') diff --git a/cyn/n2.lyx b/cyn/n2.lyx index bc13575..87f82d0 100644 --- a/cyn/n2.lyx +++ b/cyn/n2.lyx @@ -606,7 +606,7 @@ imagen inversa \end_inset como -\begin_inset Formula $f(Y)^{-1}:=f^{-1}(Y):=\{a\in A|f(a)\in Y\}$ +\begin_inset Formula $f(Y)^{-1}\coloneqq f^{-1}(Y)\coloneqq \{a\in A|f(a)\in Y\}$ \end_inset . diff --git a/cyn/n5.lyx b/cyn/n5.lyx index 9264de2..3015416 100644 --- a/cyn/n5.lyx +++ b/cyn/n5.lyx @@ -835,7 +835,7 @@ Sea \end_inset , por lo que existe -\begin_inset Formula $c:=\min B$ +\begin_inset Formula $c\coloneqq \min B$ \end_inset . @@ -1110,7 +1110,7 @@ Identificamos los enteros con los \end_inset , escribimos -\begin_inset Formula $\frac{m}{n}:=[(m,n)]$ +\begin_inset Formula $\frac{m}{n}\coloneqq [(m,n)]$ \end_inset y denotamos con @@ -2100,7 +2100,7 @@ raíz Así, todo número complejo tiene \begin_inset Formula \[ -\phi(n)=|\{m\in\{1,\dots,n-1\}\mid \text{mcd}(m,n)=1\}| +\phi(n)=|\{m\in\{1,\dots,n-1\}\mid\text{mcd}(m,n)=1\}| \] \end_inset diff --git a/cyn/n7.lyx b/cyn/n7.lyx index 525fc3d..b4c7353 100644 --- a/cyn/n7.lyx +++ b/cyn/n7.lyx @@ -806,7 +806,7 @@ El máximo común divisor de Demostración: \series default Sea -\begin_inset Formula $d:=\text{mcd}(a_{1},\dots,a_{n})$ +\begin_inset Formula $d\coloneqq \text{mcd}(a_{1},\dots,a_{n})$ \end_inset , como @@ -814,7 +814,7 @@ Demostración: \end_inset , entonces -\begin_inset Formula $d|(f:=\text{mcd}(a_{1},a_{2})),a_{3},\dots,a_{n}|e:=\text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ +\begin_inset Formula $d|(f\coloneqq \text{mcd}(a_{1},a_{2})),a_{3},\dots,a_{n}|e\coloneqq \text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ \end_inset y por tanto @@ -1735,7 +1735,7 @@ teorema \end_inset , el número -\begin_inset Formula $N:=p_{1}\cdots p_{n}+1$ +\begin_inset Formula $N\coloneqq p_{1}\cdots p_{n}+1$ \end_inset también lo es. @@ -2127,7 +2127,7 @@ La ecuación \end_inset tiene solución si y sólo si -\begin_inset Formula $d:=\text{mcd}(a,m)|b$ +\begin_inset Formula $d\coloneqq \text{mcd}(a,m)|b$ \end_inset , y las soluciones son todos los enteros @@ -2232,7 +2232,7 @@ x\equiv b_{k} & (m_{k}) \end_inset tiene solución única módulo -\begin_inset Formula $M:=m_{1}\cdots m_{k}$ +\begin_inset Formula $M\coloneqq m_{1}\cdots m_{k}$ \end_inset . diff --git a/cyn/n8.lyx b/cyn/n8.lyx index b4589b3..1249714 100644 --- a/cyn/n8.lyx +++ b/cyn/n8.lyx @@ -453,7 +453,7 @@ divisor \end_layout \begin_layout Enumerate -\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}\mid A=\mu B$ +\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$ \end_inset . -- cgit v1.2.3