From c34b47089a133e58032fe4ea52f61efacaf5f548 Mon Sep 17 00:00:00 2001 From: Juan Marin Noguera Date: Sun, 4 Dec 2022 22:49:17 +0100 Subject: Oops --- ealg/n1.lyx | 78 ++++++++++++++++++++++++++++++------------------------------- 1 file changed, 39 insertions(+), 39 deletions(-) (limited to 'ealg/n1.lyx') diff --git a/ealg/n1.lyx b/ealg/n1.lyx index a5d022d..c0fcd21 100644 --- a/ealg/n1.lyx +++ b/ealg/n1.lyx @@ -211,7 +211,7 @@ polinomios constantes \begin_layout Standard Dado -\begin_inset Formula $p:=\sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ +\begin_inset Formula $p\coloneqq \sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ \end_inset , llamamos @@ -223,7 +223,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ +\begin_inset Formula $\text{gr}(p)\coloneqq \max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ \end_inset , @@ -831,7 +831,7 @@ euclídea \end_layout \begin_layout Enumerate -\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ \end_inset . @@ -968,7 +968,7 @@ Para \end_inset , existe -\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ +\begin_inset Formula $m\coloneqq \max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ \end_inset . @@ -1155,19 +1155,19 @@ Dado un anillo [...] derivada \series default de -\begin_inset Formula $P:=\sum_{k}a_{k}X^{k}\in A[X]$ +\begin_inset Formula $P\coloneqq \sum_{k}a_{k}X^{k}\in A[X]$ \end_inset como -\begin_inset Formula $P':=[...]:=\sum_{k\geq1}ka_{k}X^{k-1}$ +\begin_inset Formula $P'\coloneqq [...]\coloneqq \sum_{k\geq1}ka_{k}X^{k-1}$ \end_inset , y escribimos -\begin_inset Formula $P^{(0)}:=P$ +\begin_inset Formula $P^{(0)}\coloneqq P$ \end_inset y -\begin_inset Formula $P^{(n+1)}:=P^{(n)\prime}$ +\begin_inset Formula $P^{(n+1)}\coloneqq P^{(n)\prime}$ \end_inset . @@ -1605,7 +1605,7 @@ Como \end_inset no es cero ni unidad, -\begin_inset Formula $n:=\text{gr}f>0$ +\begin_inset Formula $n\coloneqq \text{gr}f>0$ \end_inset , y como el coeficiente principal de @@ -1634,7 +1634,7 @@ Como \end_deeper \begin_layout Enumerate Si -\begin_inset Formula $p:=\text{car}K\neq0$ +\begin_inset Formula $p\coloneqq \text{car}K\neq0$ \end_inset , @@ -1713,7 +1713,7 @@ Para \end_inset y, sea -\begin_inset Formula $g:=\sum_{j}b_{j}X^{j}$ +\begin_inset Formula $g\coloneqq \sum_{j}b_{j}X^{j}$ \end_inset , @@ -1875,7 +1875,7 @@ teorema \end_inset ], -\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ +\begin_inset Formula $c(p)\coloneqq \{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ \end_inset , y [...] si @@ -2003,11 +2003,11 @@ Si \end_inset , -\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in D[X]$ \end_inset y -\begin_inset Formula $n:=\text{gr}(f)$ +\begin_inset Formula $n\coloneqq \text{gr}(f)$ \end_inset , todas las raíces de @@ -2043,11 +2043,11 @@ Criterio de reducción: \end_inset es primo, -\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ +\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ \end_inset es primitivo, -\begin_inset Formula $n:=\text{gr}(f)$ +\begin_inset Formula $n\coloneqq \text{gr}(f)$ \end_inset , @@ -2083,11 +2083,11 @@ Criterio de Eisenstein: \end_inset un DFU, -\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in D[X]$ \end_inset primitivo y -\begin_inset Formula $n:=\text{gr}f$ +\begin_inset Formula $n\coloneqq \text{gr}f$ \end_inset , si existe un irreducible @@ -2157,7 +2157,7 @@ La irreducibilidad se conserva por automorfismos de dominios, por lo que \end_inset , -\begin_inset Formula $f:=X^{6}+X^{3}+1$ +\begin_inset Formula $f\coloneqq X^{6}+X^{3}+1$ \end_inset es irreducible, pues @@ -2181,7 +2181,7 @@ Si \end_inset es primo, -\begin_inset Formula $f(X):=\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\dots+X+1$ +\begin_inset Formula $f(X)\coloneqq \frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\dots+X+1$ \end_inset es irreducible en @@ -2275,7 +2275,7 @@ recíproco \end_inset son los ceros de -\begin_inset Formula $f(x):=p(x)/x^{n/2}:K^{*}\to K$ +\begin_inset Formula $f(x)\coloneqq p(x)/x^{n/2}:K^{*}\to K$ \end_inset , que será de la forma @@ -2287,12 +2287,12 @@ f(x)=p_{0}x^{k}+\dots+p_{k-1}x+p_{k}+p_{k-1}x^{-1}+\dots+p_{0}x^{-k}, \end_inset donde -\begin_inset Formula $k:=n/2$ +\begin_inset Formula $k\coloneqq n/2$ \end_inset . Haciendo el cambio de variable -\begin_inset Formula $y:=x+x^{-1}$ +\begin_inset Formula $y\coloneqq x+x^{-1}$ \end_inset nos queda una función polinómica de grado @@ -2681,11 +2681,11 @@ primitiva \begin_layout Standard Dado -\begin_inset Formula $f:=Y^{3}+3pY+2q\in\mathbb{C}[X]$ +\begin_inset Formula $f\coloneqq Y^{3}+3pY+2q\in\mathbb{C}[X]$ \end_inset , si -\begin_inset Formula $\omega:=e^{2\pi i/3}$ +\begin_inset Formula $\omega\coloneqq e^{2\pi i/3}$ \end_inset , existe @@ -2878,7 +2878,7 @@ Para \begin_layout Standard Si -\begin_inset Formula $f:=aX^{3}+bX^{2}+cX+d\in\mathbb{C}[X]$ +\begin_inset Formula $f\coloneqq aX^{3}+bX^{2}+cX+d\in\mathbb{C}[X]$ \end_inset , podemos obtener las raíces de @@ -3078,7 +3078,7 @@ evaluación \end_inset viene dado por -\begin_inset Formula $p(b_{1},\dots,b_{n}):=S(p):=\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ +\begin_inset Formula $p(b_{1},\dots,b_{n})\coloneqq S(p)\coloneqq \sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ \end_inset [, y @@ -3098,7 +3098,7 @@ valor \end_inset en -\begin_inset Formula $b:=(b_{1},\dots,b_{n})$ +\begin_inset Formula $b\coloneqq (b_{1},\dots,b_{n})$ \end_inset ]. @@ -3212,11 +3212,11 @@ A[b_{1},\dots,b_{n}]\cong\frac{A[X_{1},\dots,X_{n}]}{\ker S}, \begin_layout Standard Por ejemplo, -\begin_inset Formula $b_{1}:=1/\pi$ +\begin_inset Formula $b_{1}\coloneqq 1/\pi$ \end_inset y -\begin_inset Formula $b_{2}:=1+\sqrt{\pi}$ +\begin_inset Formula $b_{2}\coloneqq 1+\sqrt{\pi}$ \end_inset son algebraicamente dependientes, pues satisfaces @@ -3346,7 +3346,7 @@ Sean \end_inset con inversa -\begin_inset Formula $\tau:=\sigma^{-1}$ +\begin_inset Formula $\tau\coloneqq \sigma^{-1}$ \end_inset , tomando @@ -3371,7 +3371,7 @@ Sean que permuta las indeterminadas. [Llamamos -\begin_inset Formula $f^{\sigma}:=\hat{\sigma}(f)$ +\begin_inset Formula $f^{\sigma}\coloneqq \hat{\sigma}(f)$ \end_inset .] @@ -3413,7 +3413,7 @@ Todo homomorfismo de anillos conmutativos \end_inset dado por -\begin_inset Formula $\hat{f}(p):=\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\begin_inset Formula $\hat{f}(p)\coloneqq \sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ \end_inset . @@ -3859,11 +3859,11 @@ Demostración: y el resultado se sigue por inducción. Sean -\begin_inset Formula $f:=\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\begin_inset Formula $f\coloneqq \sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ \end_inset y -\begin_inset Formula $g:=\sum_{i\in\mathbb{N}^{n}}b_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\begin_inset Formula $g\coloneqq \sum_{i\in\mathbb{N}^{n}}b_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ \end_inset , entonces @@ -3967,19 +3967,19 @@ Queremos ver que, para . Con esto, sean -\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}\mid a_{i}\neq0\}$ +\begin_inset Formula $A\coloneqq \{i\in\mathbb{N}^{n}\mid a_{i}\neq0\}$ \end_inset , -\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}\mid b_{j}\neq0\}$ +\begin_inset Formula $B\coloneqq \{j\in\mathbb{N}^{n}\mid b_{j}\neq0\}$ \end_inset , -\begin_inset Formula $i^{*}:=\max A$ +\begin_inset Formula $i^{*}\coloneqq \max A$ \end_inset y -\begin_inset Formula $j^{*}:=\max B$ +\begin_inset Formula $j^{*}\coloneqq \max B$ \end_inset , para -- cgit v1.2.3