From ccc5bccc4efaba81da501cb6d3ffaae1c14765fa Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Tue, 20 Apr 2021 15:26:07 +0200 Subject: Algebraicas Tema 4 --- ealg/n2.lyx | 304 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 297 insertions(+), 7 deletions(-) (limited to 'ealg/n2.lyx') diff --git a/ealg/n2.lyx b/ealg/n2.lyx index b2edddd..49dbf78 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -3728,8 +3728,210 @@ grupo de Klein \end_inset . +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Necesario para las demostraciones comentadas. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +Dado un grupo +\begin_inset Formula $G$ +\end_inset + +, llamamos +\series bold +exponente +\series default + o +\series bold +periodo +\series default + de +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $\text{Exp}(G)$ +\end_inset + +, al menor +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + tal que +\begin_inset Formula $\forall g\in G,g^{n}=1$ +\end_inset + +, o a +\begin_inset Formula $\infty$ +\end_inset + + si este no existe. + [...] Si un grupo es finito tiene periodo finito [...]. +\end_layout + +\begin_layout Plain Layout +[...] Una +\series bold +descomposición primaria +\series default + o +\series bold +indescomponible +\series default + de un grupo abeliano finito +\begin_inset Formula $A$ +\end_inset + + es una expresión de la forma +\begin_inset Formula +\begin{align*} +A= & \langle a_{11}\rangle_{p_{1}^{\alpha_{11}}}\oplus\dots\oplus\langle a_{1m_{1}}\rangle_{p_{1}^{\alpha_{1m_{1}}}}\oplus\\ + & \dots\oplus\\ + & \langle a_{k1}\rangle_{p_{k}^{\alpha_{k1}}}\oplus\dots\oplus\langle a_{km_{k}}\rangle_{p_{k}^{\alpha_{km_{k}}}}, +\end{align*} + +\end_inset + +donde +\begin_inset Formula $p_{1}<\dots0$ +\end_inset + + ( +\begin_inset Formula $1\in K^{*}$ +\end_inset + +), +\begin_inset Formula $m=|K^{*}|$ +\end_inset + +. + Entonces +\begin_inset Formula $K^{*}$ +\end_inset + + tiene una descomposición primaria de la forma +\begin_inset Formula $\langle a_{1}\rangle_{p_{1}^{\alpha_{1}}}\oplus\dots\oplus\langle a_{k}\rangle_{p_{k}^{\alpha_{k}}}$ +\end_inset + + con cada +\begin_inset Formula $p_{i}$ +\end_inset + + distinto, pues si su descomposición primaria es +\begin_inset Formula $\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{m_{i}}\langle a_{ij}\rangle_{p_{i}^{\alpha_{ij}}}$ +\end_inset + +, el orden es +\begin_inset Formula $\prod_{i,j}p_{i}^{\alpha_{ij}}$ +\end_inset + + y el exponente es +\begin_inset Formula $\prod_{i}p_{i}^{\alpha_{i1}}$ +\end_inset + +, dado que +\begin_inset Formula $p_{i}^{\alpha_{ij}}\mid p_{i}^{\alpha_{i1}}$ +\end_inset + + para todo +\begin_inset Formula $j$ +\end_inset + +, y para que estos coincidan debe ser cada +\begin_inset Formula $m_{i}=1$ +\end_inset + +. + Entonces el orden de +\begin_inset Formula $a:=a_{1}+\dots+a_{k}$ +\end_inset + + es +\begin_inset Formula $m$ +\end_inset + +, luego +\begin_inset Formula $\langle a\rangle=K^{*}$ +\end_inset + + es cíclico. +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -4244,7 +4538,7 @@ status open \begin_inset Formula $\alpha\in M$ \end_inset - y por tanto + y \begin_inset Formula $\alpha$ \end_inset @@ -4345,10 +4639,6 @@ Para \end_layout \end_deeper -\begin_layout Enumerate -Ser finitamente generada. -\end_layout - \begin_layout Standard Una propiedad relativa a extensiones es \series bold @@ -4426,7 +4716,7 @@ LM=LK(\alpha_{1},\dots,\alpha_{n})=L(\alpha_{1},\dots,\alpha_{m}), \end_inset - pues +pues \begin_inset Formula $LK(\alpha_{1},\dots,\alpha_{n})$ \end_inset -- cgit v1.2.3