From 9f88e37397a9dcfd32e69a7214317d6ee2330bba Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Mon, 19 Apr 2021 20:26:10 +0200 Subject: EALG tema 2 --- ealg/n2.lyx | 1404 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 1342 insertions(+), 62 deletions(-) (limited to 'ealg') diff --git a/ealg/n2.lyx b/ealg/n2.lyx index dcd3a77..b2edddd 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -734,7 +734,12 @@ Así, si \end_inset tiene grado finito y primo, no hay ningún cuerpo intermedio entre ellos. - En efecto, sea + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, sea \begin_inset Formula $E$ \end_inset @@ -770,6 +775,11 @@ Así, si . \end_layout +\end_inset + + +\end_layout + \begin_layout Section Extensiones generadas y admisibles \end_layout @@ -947,10 +957,14 @@ Llamamos \end_inset , que es la unión dirigida -\begin_inset Formula $\bigcup_{\{\alpha_{1},\dots,\alpha_{k}\}\subseteq S}K(\alpha_{1},\dots,\alpha_{k})$ +\begin_inset Formula +\[ +\bigcup_{\{\alpha_{1},\dots,\alpha_{k}\}\subseteq S}K(\alpha_{1},\dots,\alpha_{k}), +\] + \end_inset -, donde + donde \begin_inset Formula $K(\alpha_{1},\dots,\alpha_{k})$ \end_inset @@ -1068,53 +1082,6 @@ K\subseteq E_{1}\cap E_{2}\subseteq E_{1},E_{2}\subseteq E_{1}E_{2}\subseteq L. \end_inset -\end_layout - -\begin_layout Standard -\begin_inset Note Comment -status open - -\begin_layout Plain Layout -Sean -\begin_inset Formula $p,q\in\mathbb{N}$ -\end_inset - - primos, -\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{p}]$ -\end_inset - - y -\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{q}]$ -\end_inset - - son admisibles y -\begin_inset Formula -\[ -\mathbb{Q}[\sqrt{p}]\mathbb{Q}[\sqrt{q}]=\{a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}\}_{a,b,c,d\in\mathbb{Q}}=\mathbb{Q}(\sqrt{p}+\sqrt{q}). -\] - -\end_inset - - -\series bold -Demostración: -\series default - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO Hay que hacer mierdas de irreducibles para que salga bien, a.pdf::29. -\end_layout - -\end_inset - - -\end_layout - -\end_inset - - \end_layout \begin_layout Section @@ -1234,10 +1201,14 @@ Si \end_inset -encaje, entonces -\begin_inset Formula $[L:K]\mid[L':K]$ +\begin_inset Formula +\[ +[L:K]\mid[L':K], +\] + \end_inset -, con igualdad si y solo si + con igualdad si y solo si \begin_inset Formula $\sigma$ \end_inset @@ -1876,9 +1847,9 @@ Un \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1951,7 +1922,11 @@ Si \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $\alpha\in K$ @@ -1997,7 +1972,7 @@ Para \begin_deeper \begin_layout Standard Son raíces de -\begin_inset Formula $X^{2}-p\in\mathbb{Q}[X]$ +\begin_inset Formula $X^{2}-m\in\mathbb{Q}[X]$ \end_inset . @@ -2395,10 +2370,14 @@ Si \end_inset con -\begin_inset Formula $\sum_{i=0}^{n-1}a_{i}\alpha^{i}=0$ +\begin_inset Formula +\[ +\sum_{i=0}^{n-1}a_{i}\alpha^{i}=0, +\] + \end_inset -, pero entonces + pero entonces \begin_inset Formula $g:=\sum_{i=0}^{n-1}a_{i}X^{i}\in K[X]\setminus0$ \end_inset @@ -2649,6 +2628,138 @@ status open \end_layout +\begin_layout Standard +Sean +\begin_inset Formula $p,q\in\mathbb{N}$ +\end_inset + + primos, +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{p}]$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{q}]$ +\end_inset + + son admisibles y +\begin_inset Formula +\[ +\mathbb{Q}[\sqrt{p}]\mathbb{Q}[\sqrt{q}]=\{a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}\}_{a,b,c,d\in\mathbb{Q}}=\mathbb{Q}(\sqrt{p}+\sqrt{q}). +\] + +\end_inset + + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $p=q$ +\end_inset + + esto es obvio, por lo que supondremos +\begin_inset Formula $p\neq q$ +\end_inset + +. + Sean +\begin_inset Formula $F_{p}:=\mathbb{Q}[\sqrt{p}]$ +\end_inset + + y +\begin_inset Formula $F_{q}:=\mathbb{Q}[\sqrt{q}]$ +\end_inset + +, +\begin_inset Formula $F_{p}$ +\end_inset + + y +\begin_inset Formula $F_{q}$ +\end_inset + + son admisibles por ser ambos subcuerpos de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + Claramente +\begin_inset Formula $S:=\{a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}\}_{a,b,c,d\in\mathbb{Q}}\subseteq F_{p}F_{q}$ +\end_inset + +. + Sea ahora +\begin_inset Formula $\alpha:=\sqrt{p}+\sqrt{q}\in S$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\alpha^{2}=p+q+2\sqrt{pq}\implies\alpha^{2}-(p+q)=2\sqrt{pq}\implies\\ +\implies\alpha^{4}-2(p+q)\alpha^{2}+2(p+q)^{2}=4pq\implies\alpha^{4}-2(p+q)\alpha^{2}+2(p-q)^{2}=0, +\end{multline*} + +\end_inset + +luego +\begin_inset Formula $\alpha$ +\end_inset + + es raíz del polinomio +\begin_inset Formula $X^{4}-2(p+q)X^{2}+2(p-q)^{2}\in\mathbb{Q}[X]$ +\end_inset + + y por tanto es algebraico, con lo que +\begin_inset Formula $\mathbb{Q}[\alpha]=\mathbb{Q}(\alpha)$ +\end_inset + +. + +\begin_inset Formula $S$ +\end_inset + + es un anillo, pues es cerrado para restas y productos y contiene al 1, + y como además +\begin_inset Formula $\mathbb{Q}\cup\{\alpha\}\subseteq S$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}[\alpha]\subseteq S$ +\end_inset + +. + Finalmente, como +\begin_inset Formula +\[ +\frac{1}{\alpha}=\frac{1}{\sqrt{p}+\sqrt{q}}\frac{\sqrt{p}-\sqrt{q}}{\sqrt{p}-\sqrt{q}}=\frac{\sqrt{p}-\sqrt{q}}{p-q}\in\mathbb{Q}(\alpha), +\] + +\end_inset + + +\begin_inset Formula $\sqrt{p}-\sqrt{q}\in\mathbb{Q}(\alpha)$ +\end_inset + + y por tanto +\begin_inset Formula $\sqrt{p},\sqrt{q}\in\mathbb{Q}(\alpha)$ +\end_inset + +, con lo que +\begin_inset Formula $F_{p},F_{q}\subseteq\mathbb{Q}(\alpha)$ +\end_inset + + y +\begin_inset Formula $F_{p}F_{q}\subseteq\mathbb{Q}(\alpha)$ +\end_inset + +. + Con esto +\begin_inset Formula $S\subseteq F_{p}F_{q}\subseteq\mathbb{Q}(\alpha)=\mathbb{Q}[\alpha]\subseteq S$ +\end_inset + +, luego estos conjuntos son iguales. +\end_layout + \begin_layout Standard Sean \begin_inset Formula $K$ @@ -3156,17 +3267,1186 @@ Un \end_deeper \begin_layout Enumerate -\begin_inset Note Note -status open +Para toda raíz +\begin_inset Formula $\beta$ +\end_inset -\begin_layout Plain Layout -a1::46, C2.35 + de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene +\begin_inset Formula $m$ +\end_inset + + raíces en +\begin_inset Formula $K(\beta)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Al ser +\begin_inset Formula $\alpha$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + + raíces de un mismo irreducible, +\begin_inset Formula $\text{Gal}(K(\alpha)/K)\cong\text{Gal}(K(\beta)/K)$ +\end_inset + +, luego +\begin_inset Formula $|\text{Gal}(K(\beta)/K)|=m$ +\end_inset + +, y el resultado se obtiene del punto anterior. \end_layout +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples (por ejemplo, si +\begin_inset Formula $\text{car}K=0$ \end_inset +), entonces +\begin_inset Formula $m\mid n$ +\end_inset +. \end_layout +\begin_deeper +\begin_layout Standard +Las +\begin_inset Formula $n$ +\end_inset + + raíces se reparten en extensiones +\begin_inset Formula $K(\alpha)$ +\end_inset + + de +\begin_inset Formula $m$ +\end_inset + + elementos, y si una raíz +\begin_inset Formula $\alpha$ +\end_inset + + estuviera en una extensión +\begin_inset Formula $K(\beta)$ +\end_inset + +, siendo +\begin_inset Formula $\beta$ +\end_inset + + otra raíz de +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula $K(\beta)\subseteq K(\alpha)$ +\end_inset + + con +\begin_inset Formula $[K(\beta):K]=[K(\alpha):K]$ +\end_inset + +, luego +\begin_inset Formula $K(\alpha)=K(\beta)$ +\end_inset + + y ninguna raíz está en dos extensiones distintas. +\end_layout + +\end_deeper +\begin_layout Section +Algunos grupos de Galois +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{Gal}(\mathbb{R}/\mathbb{Q})=1. +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\sigma:\mathbb{R}\to\mathbb{R}$ +\end_inset + + un +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +-automorfismo, y queremos ver que entonces +\begin_inset Formula $\sigma=1_{\mathbb{R}}$ +\end_inset + +. + Para +\begin_inset Formula $r,s\in\mathbb{R}$ +\end_inset + +, si +\begin_inset Formula $r0$ +\end_inset + +, con lo que +\begin_inset Formula $\sigma(r)<\sigma(s)$ +\end_inset + +. + Entonces +\begin_inset Formula $\sigma$ +\end_inset + + conserva el orden, luego para +\begin_inset Formula $t\in\mathbb{R}$ +\end_inset + +, si +\begin_inset Formula $\sigma(t)t$ +\end_inset + +, sea +\begin_inset Formula $q\in\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $t1$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $1,\dots,n-1$ +\end_inset + +, +\begin_inset Formula $K\subseteq K(\alpha_{1})$ +\end_inset + + es finita y, como +\begin_inset Formula $\alpha_{2},\dots,\alpha_{n}$ +\end_inset + + son algebraicos sobre +\begin_inset Formula $K(\alpha_{1})$ +\end_inset + +, +\begin_inset Formula $K(\alpha_{1})\subseteq K(\alpha_{1})(\alpha_{2},\dots,\alpha_{n})=K(\alpha_{1},\dots,\alpha_{n})=L$ +\end_inset + + es finita, y +\begin_inset Formula $[L:K]=[L:K(\alpha_{1})][K(\alpha_{1}):K]$ +\end_inset + + es finito. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión y +\begin_inset Formula $S\subseteq L$ +\end_inset + + un subconjunto cuyos elementos son algebraicos sobre +\begin_inset Formula $K$ +\end_inset + +, entonces +\begin_inset Formula $K\subseteq K(S)$ +\end_inset + + es una extensión algebraica, pues para +\begin_inset Formula $\alpha\in K(S)$ +\end_inset + +, +\begin_inset Formula $\alpha\in K(\alpha_{1},\dots,\alpha_{k})$ +\end_inset + + para ciertos +\begin_inset Formula $\alpha_{1},\dots,\alpha_{k}\in S$ +\end_inset + +, que son algebraicos, luego por lo anterior +\begin_inset Formula $K\subseteq K(\alpha_{1},\dots,\alpha_{k})$ +\end_inset + + es algebraica y por tanto +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico. +\end_layout + +\begin_layout Standard +La +\series bold +clausura algebraica +\series default + de una extensión +\begin_inset Formula $K\subseteq L$ +\end_inset + + o de +\begin_inset Formula $K$ +\end_inset + + en +\begin_inset Formula $L$ +\end_inset + + es +\begin_inset Formula +\[ +\overline{K}_{L}:=\{\alpha\in L:\alpha\text{ es algebraico sobre }K\}. +\] + +\end_inset + +Es un cuerpo, pues para +\begin_inset Formula $\alpha,\beta\in\overline{K}_{L}$ +\end_inset + +, +\begin_inset Formula $K(\alpha,\beta)$ +\end_inset + + es una extensión algebraica de +\begin_inset Formula $K$ +\end_inset + + que contiene a 1, +\begin_inset Formula $\alpha-\beta$ +\end_inset + +, +\begin_inset Formula $\alpha\beta$ +\end_inset + + y, si +\begin_inset Formula $\beta\neq0$ +\end_inset + +, a +\begin_inset Formula $\alpha\beta^{-1}$ +\end_inset + +, y que al ser algebraica está contenida en +\begin_inset Formula $\overline{K}_{L}$ +\end_inset + +. + Así, +\begin_inset Formula $\overline{K}_{L}$ +\end_inset + + es el mayor cuerpo intermedio de +\begin_inset Formula $K\subseteq L$ +\end_inset + + algebraico sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +cuerpo de números algebraicos +\series default + es un cuerpo +\begin_inset Formula $L$ +\end_inset + + entre +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}$ +\end_inset + + tal que +\begin_inset Formula $\mathbb{Q}\subseteq L$ +\end_inset + + es finita. + Llamamos +\series bold +cuerpo de los números algebraicos +\series default + a +\begin_inset Formula ${\cal A}:=\overline{\mathbb{Q}}_{\mathbb{C}}$ +\end_inset + +, y +\series bold +números algebraicos +\series default + a los elementos de +\begin_inset Formula ${\cal A}$ +\end_inset + +, de modo que para todo cuerpo de números algebraicos +\begin_inset Formula $L$ +\end_inset + +, +\begin_inset Formula $L\subseteq{\cal A}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{Q}\subseteq{\cal A}$ +\end_inset + + es algebraica pero no finita, pues para un primo +\begin_inset Formula $p$ +\end_inset + + arbitrariamente grande, +\begin_inset Formula ${\cal A}$ +\end_inset + + contiene a +\begin_inset Formula $\mathbb{Q}(\xi_{p})$ +\end_inset + + para +\begin_inset Formula $\xi_{p}:=e^{2\pi i/p}$ +\end_inset + +, pero +\begin_inset Formula $[\mathbb{Q}(\xi_{p}):\mathbb{Q}]=p-1$ +\end_inset + +, luego +\begin_inset Formula $[{\cal A}:\mathbb{Q}]\geq p-1$ +\end_inset + + para todo primo +\begin_inset Formula $p$ +\end_inset + + y por tanto +\begin_inset Formula $[{\cal A}:\mathbb{Q}]=\infty$ +\end_inset + +. +\end_layout + +\begin_layout Section +Propiedades de extensiones +\end_layout + +\begin_layout Standard +Una +\series bold +torre de extensiones +\series default + es una secuencia de extensiones de cuerpos de la forma +\begin_inset Formula $(K_{i-1}\subseteq K_{i})_{i=1}^{n}$ +\end_inset + +, escrita como +\begin_inset Formula $K_{0}\subseteq K_{1}\subseteq\dots\subseteq K_{n}$ +\end_inset + +, y cada extensión de la secuencia es una +\series bold +subextensión +\series default + de +\begin_inset Formula $K_{0}\subseteq K_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una propiedad de extensiones es +\series bold +multiplicativa en torres +\series default + si para cada torre de extensiones +\begin_inset Formula $K\subseteq L\subseteq M$ +\end_inset + +, +\begin_inset Formula $K\subseteq M$ +\end_inset + + cumple la propiedad si y solo si la cumplen +\begin_inset Formula $K\subseteq L$ +\end_inset + + y +\begin_inset Formula $L\subseteq M$ +\end_inset + +. + Son multiplicativas en torres: +\end_layout + +\begin_layout Enumerate +Ser finita. +\end_layout + +\begin_deeper +\begin_layout Standard +Se debe a que +\begin_inset Formula $[M:K]=[M:L][L:K]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Ser algebraica. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $K\subseteq L$ +\end_inset + + es algebraica porque, para +\begin_inset Formula $\alpha\in L$ +\end_inset + +, +\begin_inset Formula $\alpha\in M$ +\end_inset + + y por tanto +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + +, y +\begin_inset Formula $L\subseteq M$ +\end_inset + + lo es porque, para +\begin_inset Formula $\alpha\in M$ +\end_inset + +, +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + + y por tanto sobre +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $\alpha\in M$ +\end_inset + +, existe +\begin_inset Formula $f:=\sum_{i=0}^{n}a_{i}X^{i}\in L[X]$ +\end_inset + + que tiene a +\begin_inset Formula $\alpha$ +\end_inset + + como raíz. + Pero cada +\begin_inset Formula $a_{i}\in L$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + +, luego +\begin_inset Formula $K\subseteq L'=K(a_{0},\dots,a_{n-1})$ +\end_inset + + es finita, y como +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico sobre +\begin_inset Formula $L'$ +\end_inset + + por ser raíz de +\begin_inset Formula $f\in L'[X]$ +\end_inset + +, +\begin_inset Formula $L'\subseteq L'(\alpha)$ +\end_inset + + es finita, de modo que +\begin_inset Formula $K\subseteq L'(\alpha)$ +\end_inset + + es algebraica y +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Ser finitamente generada. +\end_layout + +\begin_layout Standard +Una propiedad relativa a extensiones es +\series bold +estable por levantamientos +\series default + si, dadas dos extensiones admisibles +\begin_inset Formula $K\subseteq L$ +\end_inset + + y +\begin_inset Formula $K\subseteq M$ +\end_inset + +, si +\begin_inset Formula $K\subseteq M$ +\end_inset + + cumple la propiedad, +\begin_inset Formula $L\subseteq LM$ +\end_inset + + también. + Son estables por levantamientos: +\end_layout + +\begin_layout Enumerate +Ser algebraica. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $K\subseteq M$ +\end_inset + + es algebraica, los +\begin_inset Formula $\alpha\in M$ +\end_inset + + son algebraicos sobre +\begin_inset Formula $L$ +\end_inset + + al serlo sobre +\begin_inset Formula $K$ +\end_inset + +, por lo que +\begin_inset Formula $L\subseteq L(M)=LM$ +\end_inset + + es algebraica. +\end_layout + +\end_deeper +\begin_layout Enumerate +Ser finitamente generada. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in M$ +\end_inset + + tales que +\begin_inset Formula $M=K(\alpha_{1},\dots,\alpha_{n})$ +\end_inset + +, +\begin_inset Formula +\[ +LM=LK(\alpha_{1},\dots,\alpha_{n})=L(\alpha_{1},\dots,\alpha_{m}), +\] + +\end_inset + + pues +\begin_inset Formula $LK(\alpha_{1},\dots,\alpha_{n})$ +\end_inset + + es el menor cuerpo que contiene a +\begin_inset Formula $L\cup K\cup\{\alpha_{1},\dots,\alpha_{n}\}=L\cup\{\alpha_{1},\dots,\alpha_{n}\}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Ser finita. +\end_layout + +\begin_deeper +\begin_layout Standard +Equivale a ser algebraica y finitamente generada. +\end_layout + +\end_deeper \end_body \end_document -- cgit v1.2.3