From b01bada353e42059d8c17caac88decee78860410 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Tue, 8 Jun 2021 19:40:00 +0200 Subject: Algebraicas tema 5 --- ealg/n.lyx | 14 + ealg/n5.lyx | 1871 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1885 insertions(+) create mode 100644 ealg/n5.lyx (limited to 'ealg') diff --git a/ealg/n.lyx b/ealg/n.lyx index 099164a..b013914 100644 --- a/ealg/n.lyx +++ b/ealg/n.lyx @@ -188,6 +188,20 @@ filename "n4.lyx" \end_inset +\end_layout + +\begin_layout Chapter +Raíces de la unidad +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + \end_layout \end_body diff --git a/ealg/n5.lyx b/ealg/n5.lyx new file mode 100644 index 0000000..6d812c2 --- /dev/null +++ b/ealg/n5.lyx @@ -0,0 +1,1871 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $n\geq2$ +\end_inset + +, un +\begin_inset Formula $\xi\in K$ +\end_inset + + es una +\series bold +raíz +\begin_inset Formula $n$ +\end_inset + +-ésima de la unidad +\series default + o +\series bold +de uno +\series default + si +\begin_inset Formula $\xi^{n}=1$ +\end_inset + +, y llamamos +\begin_inset Formula +\[ +{\cal U}_{n}(K):=\{\xi\in K:\xi^{n}=1\}=\{\xi\in K:o_{K^{*}}(\xi)\mid n\}. +\] + +\end_inset + +En efecto, el orden de +\begin_inset Formula $\xi$ +\end_inset + + en +\begin_inset Formula $K^{*}$ +\end_inset + + es el menor +\begin_inset Formula $m>0$ +\end_inset + + con +\begin_inset Formula $\xi^{m}=n$ +\end_inset + +, luego si +\begin_inset Formula $m\mid n$ +\end_inset + + entonces +\begin_inset Formula $\xi^{n}=(\xi^{m})^{n/m}=1^{n/m}=1$ +\end_inset + + y si +\begin_inset Formula $\xi^{n}=1$ +\end_inset + +, sean +\begin_inset Formula $q$ +\end_inset + + y +\begin_inset Formula $r$ +\end_inset + + el cociente y resto de +\begin_inset Formula $n/m$ +\end_inset + +, entonces +\begin_inset Formula $1=\xi^{mq+r}=(\xi^{m})^{q}\xi^{r}=\xi^{r}$ +\end_inset + +, pero como +\begin_inset Formula $r0$ +\end_inset + +, +\begin_inset Formula +\[ +|a^{n}|=\frac{|a|}{\text{mcd}\{|a|,n\}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{CyN} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Definimos la +\series bold +función +\begin_inset Formula $\phi$ +\end_inset + + de Euler +\series default + como +\begin_inset Formula $\phi:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\phi(m)=|\{x\in\mathbb{N}|1\leq x\leq m\land\text{mcd}(x,m)=1\}|=|\mathbb{Z}_{m}^{*}|$ +\end_inset + +. + [...] Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ +\end_inset + +. + [...] Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si un cuerpo +\begin_inset Formula $K$ +\end_inset + + tiene una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno +\begin_inset Formula $\xi$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $K$ +\end_inset + + tiene exactamente +\begin_inset Formula $n$ +\end_inset + + raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de uno, +\begin_inset Formula $\xi,\xi^{2},\dots,\xi^{n}=1$ +\end_inset + +, y +\begin_inset Formula $\phi(n)$ +\end_inset + + de ellas son primitivas. + En particular +\begin_inset Formula $X^{n}-1$ +\end_inset + + se descompone completamente en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para cada +\begin_inset Formula $d\mid n$ +\end_inset + + natural hay una raíz +\begin_inset Formula $d$ +\end_inset + +-ésima primitiva en +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $\xi^{n/d}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K$ +\end_inset + + es finito, esto se cumple para +\begin_inset Formula $n=|K|-1$ +\end_inset + +, y si +\begin_inset Formula $K\subseteq\mathbb{C}$ +\end_inset + +, se aplica cuando +\begin_inset Formula $e^{2\pi i/n}\in K$ +\end_inset + +. +\end_layout + +\begin_layout Section +Polinomios ciclotómicos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $P$ +\end_inset + + un cuerpo primo ( +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + o +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +), +\begin_inset Formula $n\geq2$ +\end_inset + + con +\begin_inset Formula $\text{car}P\nmid n$ +\end_inset + + y +\begin_inset Formula $L$ +\end_inset + + el cuerpo de descomposición sobre +\begin_inset Formula $P$ +\end_inset + + de +\begin_inset Formula $X^{n}-1$ +\end_inset + +, que contiene +\begin_inset Formula $\phi(n)$ +\end_inset + + raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas primitivas de uno +\begin_inset Formula $\xi_{1},\dots,\xi_{n}$ +\end_inset + +, llamamos +\series bold + +\begin_inset Formula $n$ +\end_inset + +-ésimo polinomio ciclotómico en característica +\begin_inset Formula $\text{car}P$ +\end_inset + + +\series default + a +\begin_inset Formula +\[ +\Phi_{n}(X):=(X-\xi_{1})\cdots(X-\xi_{r})\in L[X]. +\] + +\end_inset + +Si +\begin_inset Formula $\text{car}K\nmid n$ +\end_inset + +, +\begin_inset Formula $X^{n}-1=\prod_{0