From c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Thu, 20 Feb 2020 16:07:37 +0100 Subject: 2 --- fuvr2/n2.lyx | 3720 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3720 insertions(+) create mode 100644 fuvr2/n2.lyx (limited to 'fuvr2/n2.lyx') diff --git a/fuvr2/n2.lyx b/fuvr2/n2.lyx new file mode 100644 index 0000000..9d5d103 --- /dev/null +++ b/fuvr2/n2.lyx @@ -0,0 +1,3720 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +partición +\series default + de +\begin_inset Formula $[a,b]$ +\end_inset + + es una colección de puntos +\begin_inset Formula $a=t_{0}0,\exists\pi\in{\cal P}([a,b]):S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $\int_{a}^{b}f=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}$ +\end_inset + +, existe +\begin_inset Formula $\pi_{1}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $0\leq S(f,\pi_{1})-\int_{a}^{b}f<\frac{\varepsilon}{2}$ +\end_inset + +, y análogamente existe +\begin_inset Formula $\pi_{2}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $0\leq\int_{a}^{b}f-s(f,\pi_{2})<\frac{\varepsilon}{2}$ +\end_inset + +. + Entonces +\begin_inset Formula $\pi:=\pi_{1}\lor\pi_{2}$ +\end_inset + + cumple ambas desigualdades, pues +\begin_inset Formula $S(f,\pi)\leq S(f,\pi_{1})$ +\end_inset + + y +\begin_inset Formula $s(f,\pi)\geq s(f,\pi_{2})$ +\end_inset + +, y sumándolas obtenemos +\begin_inset Formula $S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $\pi_{\varepsilon}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi_{\varepsilon})-s(f,\pi_{\varepsilon})<\varepsilon$ +\end_inset + +, por la definición de integral superior e inferior, +\begin_inset Formula $0\leq\overline{\int_{a}^{b}}f-\underline{\int_{a}^{b}}f\leq S(f,\pi_{\varepsilon})-s(f,\pi_{\varepsilon})\leq\varepsilon$ +\end_inset + +, lo que para +\begin_inset Formula $\varepsilon$ +\end_inset + + arbitrario implica que las integrales superior e inferior coinciden. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f\in{\cal R}[a,b]\iff\exists!\alpha\in\mathbb{R}:\forall\pi\in{\cal P}([a,b]),s(f,\pi)\leq\alpha\leq S(f,\pi)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\alpha:=\int_{a}^{b}f$ +\end_inset + +, para toda +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $s(f,\pi)\leq\alpha\leq S(f,\pi)$ +\end_inset + +. + Si existiera +\begin_inset Formula $\beta\neq\alpha$ +\end_inset + + que cumpliera la condición, como +\begin_inset Formula $\alpha=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])}$ +\end_inset + + se tendría +\begin_inset Formula $\beta>\alpha$ +\end_inset + +, pero análogamente que +\begin_inset Formula $\beta<\alpha$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Supongamos que existe un +\begin_inset Formula $\alpha$ +\end_inset + + que verifica la condición pero +\begin_inset Formula $f\notin{\cal R}[a,b]$ +\end_inset + +. + Entonces para cualquier +\begin_inset Formula $\pi\in{\cal R}[a,b]$ +\end_inset + + se tiene +\begin_inset Formula $s(f,\pi)\leq\underline{\int_{a}^{b}}f<\overline{\int_{a}^{b}}f\leq S(f,\pi)$ +\end_inset + +, por lo que existen infinitos números reales que verifican la condición + y por tanto +\begin_inset Formula $\alpha$ +\end_inset + + no es único. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Otro +\series bold +teorema +\series default +importante es que las funciones +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continuas son integrables en +\begin_inset Formula $[a,b]$ +\end_inset + +, y además, dados +\begin_inset Formula $z_{k,n}\in[a+\frac{b-a}{n}(k-1),a+\frac{b-a}{n}k]$ +\end_inset + + cualesquiera, +\begin_inset Formula +\[ +\lim_{n\rightarrow\infty}\frac{b-a}{n}\sum_{k=1}^{n}f(z_{k,n})=\int_{a}^{b}f +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})$ +\end_inset + +. + Ahora bien, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + también es uniformemente continua, luego existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|x-y|<\delta$ +\end_inset + + entonces +\begin_inset Formula $|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)}$ +\end_inset + +. + Sea +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $\frac{b-a}{n_{0}}<\delta$ +\end_inset + +. + Para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + definimos +\begin_inset Formula $\pi_{n}=(a0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $S(f,\pi_{n})-s(f,\pi_{n})<\frac{\varepsilon}{2}$ +\end_inset + +, de modo que +\begin_inset Formula $S(f,\pi_{n})-\alpha\leq\frac{\varepsilon}{2}$ +\end_inset + + y +\begin_inset Formula $S(f,\pi_{n})-a_{n}<\frac{\varepsilon}{2}$ +\end_inset + +, y entonces +\begin_inset Formula $|a_{n}-\alpha|\leq|a_{n}-S(f,\pi_{n})|+|S(f,\pi_{n})-\alpha|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + monótona y acotada entonces +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Dada +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + +, +\begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})$ +\end_inset + +, y dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, si por ejemplo +\begin_inset Formula $f$ +\end_inset + + es monótona creciente y +\begin_inset Formula $f(a)a$ +\end_inset + + entonces +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A>0$ +\end_inset + + con +\begin_inset Formula $|f(x)|\leq A\forall x\in[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $-A\leq\inf\{f(x)\}_{x\in[a,b]}\leq\sup\{f(x)\}_{x\in[a,b]}\leq A$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $c\in(a,b]$ +\end_inset + + con +\begin_inset Formula $c-a<\frac{\varepsilon}{4A}$ +\end_inset + + y +\begin_inset Formula $\pi\in{\cal P}([c,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi)-s(f,\pi)<\frac{\varepsilon}{2}$ +\end_inset + +, si tomamos +\begin_inset Formula $\pi'\in{\cal P}([a,b])$ +\end_inset + + resultado de añadir a +\begin_inset Formula $\pi$ +\end_inset + + el intervalo +\begin_inset Formula $[a,c]$ +\end_inset + + con +\begin_inset Formula $M_{1}=\sup\{f(x)\}_{x\in[a,c]}$ +\end_inset + + y +\begin_inset Formula $m_{1}=\inf\{f(x)\}_{x\in[a,c]}$ +\end_inset + +, entonces +\begin_inset Formula $S(f,\pi')-s(f,\pi')=M_{1}(c-a)+S(f,\pi)-m_{1}(c-a)-s(f,\pi)\leq2A(c-a)+S(f,\pi)-s(f,\pi)\leq2A(c-a)+\frac{\varepsilon}{2}<2A\frac{\varepsilon}{4A}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +Sumas de Riemann +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\pi\equiv(t_{0}<\dots0$ +\end_inset + + existe +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + tal que si +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + +, para cualesquiera +\begin_inset Formula $z_{i}\in[t_{i-1},t_{i}]$ +\end_inset + + se cumple +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + +, y entonces +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +, fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi_{0})-s(f,\pi_{0})<\varepsilon$ +\end_inset + +, si +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + + entonces +\begin_inset Formula $S(f,\pi)-s(f,\pi)\leq S(f,\pi_{0})-s(f,\pi_{0})<\varepsilon$ +\end_inset + +, +\begin_inset Formula $s(f,\pi)\leq S(f,\pi,z_{i})\leq S(f,\pi)$ +\end_inset + + y +\begin_inset Formula $s(f,\pi)\leq A\leq S(f,\pi)$ +\end_inset + +. + Pero esto implica que +\begin_inset Formula $0\leq A-s(f,\pi)\leq S(f,\pi)-s(f,\pi)\leq\varepsilon$ +\end_inset + +, +\begin_inset Formula $A-S(f,\pi,z_{i})\leq S(f,\pi)-s(f,\pi)\leq\varepsilon$ +\end_inset + + y +\begin_inset Formula $S(f,\pi,z_{i})-A\geq s(f,\pi)-S(f,\pi)\geq-\varepsilon$ +\end_inset + +, con lo que +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ +\end_inset + + para puntos +\begin_inset Formula $z_{i}$ +\end_inset + + con +\begin_inset Formula $M_{i}-f(z_{i})<\frac{\varepsilon}{2(b-a)}$ +\end_inset + +, entonces +\begin_inset Formula $S(f,\pi)-S(f,\pi,z_{i})=\sum_{i=1}^{n}(M_{i}-f(z_{i}))(t_{i}-t_{i-1})\leq\sum_{i=1}^{n}\frac{\varepsilon}{2(b-a)}(t_{i}-t_{i-1})=\frac{\varepsilon}{2}$ +\end_inset + +, y como +\begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ +\end_inset + + entonces +\begin_inset Formula $|A-S(f,\pi)|<\varepsilon$ +\end_inset + +. + Análogamente se tiene que +\begin_inset Formula $|A-s(f,\pi)|<\varepsilon$ +\end_inset + +. + Por tanto +\begin_inset Formula $|S(f,\pi)-s(f,\pi)|<2\varepsilon$ +\end_inset + + y +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Queda ver que +\begin_inset Formula $A=\int_{a}^{b}f$ +\end_inset + +. + Supongamos que existe +\begin_inset Formula $\pi_{0}$ +\end_inset + + con +\begin_inset Formula $s(f,\pi_{0})\leq S(f,\pi_{0})A-\frac{\varepsilon}{2}=\frac{A+S(f,\pi_{0})}{2}>S(f,\pi_{0})$ +\end_inset + +, pero al mismo tiempo +\begin_inset Formula $S(f,\pi',z_{i})0$ +\end_inset + + existe una sucesión +\begin_inset Formula $I_{n}$ +\end_inset + + de intervalos cerrados y acotados con +\begin_inset Formula $A\subseteq\bigcup_{n}I_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n=1}^{\infty}\text{long}(I_{n})\leq\varepsilon$ +\end_inset + +, donde +\begin_inset Formula $\text{long}([a,b]):=b-a$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + tiene medida cero y +\begin_inset Formula $B\subseteq A$ +\end_inset + + entonces +\begin_inset Formula $B$ +\end_inset + + tiene medida cero, y si +\begin_inset Formula $A$ +\end_inset + + es numerable tiene medida cero tomando, para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, la sucesión con +\begin_inset Formula $I_{n}=\{x_{n}-\frac{\varepsilon}{2^{n+1}},x_{n}+\frac{\varepsilon}{2^{n+1}}\}$ +\end_inset + +, pues +\begin_inset Formula $\sum_{n}\text{long}(I_{n})=\sum_{n}\frac{\varepsilon}{2^{n}}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Lebesgue +\series default + afirma que dada una función acotada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + +, si +\begin_inset Formula $D(f)\subseteq[a,b]$ +\end_inset + + es el conjunto de puntos en los que +\begin_inset Formula $f$ +\end_inset + + no es continua, entonces +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + si y sólo si +\begin_inset Formula $D(f)$ +\end_inset + + tiene medida cero. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\pi=(t_{0}<\dots0,\exists\pi_{0}\in{\cal P}([a,b]):\forall\pi\succ\pi_{0},|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + + para cualquier suma de Riemann correspondiente a +\begin_inset Formula $\pi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists A\in\mathbb{R}:\forall\varepsilon>0,\exists\delta>0:\forall\pi:\Vert\pi\Vert<\delta,|A-S(f,\pi,z_{i})|<\varepsilon$ +\end_inset + + para cualquier suma de Riemann correspondiente a +\begin_inset Formula $\pi$ +\end_inset + +. +\end_layout + +\begin_layout Section +Propiedades +\end_layout + +\begin_layout Description +Linealidad +\begin_inset Formula ${\cal R}[a,b]$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial y el operador +\begin_inset Formula $\int_{a}^{b}$ +\end_inset + + es lineal. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $f,g\in{\cal R}[a,b]$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + tal que para +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + + se tienen +\begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|,\left|\int_{a}^{b}g-S(g,\pi,z_{i})\right|<\frac{\varepsilon}{2}$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\left|\int_{a}^{b}f+\int_{a}^{b}g-S(f+g,\pi,z_{i})\right|<\varepsilon +\] + +\end_inset + +con lo que +\begin_inset Formula $\int_{a}^{b}(f+g)=\int_{a}^{b}f+\int_{a}^{b}g$ +\end_inset + +. + Sea ahora +\begin_inset Formula $k\in\mathbb{R}$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ +\end_inset + + tal que para +\begin_inset Formula $\pi_{0}\prec\pi$ +\end_inset + + se cumple +\begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<\frac{\varepsilon}{1+|k|}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\left|k\int_{a}^{b}f-S(kf,\pi,z_{i})\right|=|k|\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<|k|\frac{\varepsilon}{1+|k|}<\varepsilon +\] + +\end_inset + +luego +\begin_inset Formula $\int_{a}^{b}kf=k\int_{a}^{b}f$ +\end_inset + +. +\end_layout + +\begin_layout Description +Producto Si +\begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + son integrables Riemann, también lo es +\begin_inset Formula $fg$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Por el teorema de Lebesgue, si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +, tendrá medida cero, pero +\begin_inset Formula $D(f^{2})\subseteq D(f)$ +\end_inset + +, pues si +\begin_inset Formula $f$ +\end_inset + + es continua en un punto también lo es +\begin_inset Formula $f^{2}$ +\end_inset + +. + Entonces +\begin_inset Formula $D(f^{2})$ +\end_inset + + tiene medida cero, lo que nos da la integrabilidad de +\begin_inset Formula $f^{2}$ +\end_inset + +. + El caso general se sigue de que +\begin_inset Formula $fg=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$ +\end_inset + + por la linealidad. +\end_layout + +\begin_layout Description +Monotonía Si +\begin_inset Formula $f(x)\leq g(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + + entonces +\begin_inset Formula $\int_{a}^{b}f\leq\int_{a}^{b}g$ +\end_inset + +, y en particular si +\begin_inset Formula $m\leq f(x)\leq M$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $m(b-a)\leq\int_{a}^{b}f\leq M(b-a)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + se tiene +\begin_inset Formula $s(f,\pi)\leq s(g,\pi)$ +\end_inset + +, y tomando supremos, +\begin_inset Formula $\int_{a}^{b}f\leq\int_{a}^{b}g$ +\end_inset + +. +\end_layout + +\begin_layout Description +Valor +\begin_inset space ~ +\end_inset + +medio Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua, existe +\begin_inset Formula $c\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c)=\frac{1}{b-a}\int_{a}^{b}f$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Por el teorema de Weierstrass, existen +\begin_inset Formula $c_{1},c_{2}\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c_{1})\leq f(x)\leq f(c_{2})$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, y por la monotonía de la integral, +\begin_inset Formula $f(c_{1})\leq\frac{1}{b-a}\int_{a}^{b}f\leq f(c_{2})$ +\end_inset + +. + Entonces, aplicando la propiedad de los valores intermedios, existe +\begin_inset Formula $c\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(c)=\frac{1}{b-a}\int_{a}^{b}f$ +\end_inset + +. +\end_layout + +\begin_layout Description +Valor +\begin_inset space ~ +\end_inset + +absoluto Si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + entonces +\begin_inset Formula $|f|\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $\left|\int_{a}^{b}f\right|\leq\int_{a}^{b}|f|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + con +\begin_inset Formula $S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +, si +\begin_inset Formula $M'_{i}$ +\end_inset + + y +\begin_inset Formula $m'_{i}$ +\end_inset + + son el supremo y el ínfimo, respectivamente, de +\begin_inset Formula $|f|$ +\end_inset + + en +\begin_inset Formula $[t_{i-1},t_{i}]$ +\end_inset + +, y +\begin_inset Formula $M_{i}$ +\end_inset + + y +\begin_inset Formula $m_{i}$ +\end_inset + + son los de +\begin_inset Formula $f$ +\end_inset + +, entonces para +\begin_inset Formula $z,w\in[t_{i-1},t_{i}]$ +\end_inset + + se tiene que +\begin_inset Formula $||f(z)|-|f(w)||\leq|f(z)-f(w)|\leq M_{i}-m_{i}$ +\end_inset + +, por lo que +\begin_inset Formula $\sup\{|f(z)|-|f(w)|\}_{z,w\in[t_{i-1},t_{i}]}=M'_{i}-m'_{i}\leq M_{i}-m_{i}$ +\end_inset + + y entonces +\begin_inset Formula $S(|f|,\pi)-s(|f|,\pi)\leq S(f,\pi)-s(f,\pi)<\varepsilon$ +\end_inset + +, con lo que +\begin_inset Formula $|f|\in{\cal R}[a,b]$ +\end_inset + +. + Ahora bien, +\begin_inset Formula $-|f(x)|\leq f(x)\leq|f(x)|$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, con lo que +\begin_inset Formula $\int_{a}^{b}-|f|=-\int_{a}^{b}|f|\leq\int_{a}^{b}f\leq\int_{a}^{b}|f|$ +\end_inset + +. +\end_layout + +\begin_layout Description +Aditividad +\begin_inset space ~ +\end_inset + +respecto +\begin_inset space ~ +\end_inset + +de +\begin_inset space ~ +\end_inset + +intervalo Dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + acotada y +\begin_inset Formula $c\in[a,b]$ +\end_inset + +, +\begin_inset Formula $f\in{\cal R}[a,b]\iff f\in{\cal R}[a,c],{\cal R}[c,b]$ +\end_inset + +, y además +\begin_inset Formula $\int_{a}^{b}f=\int_{a}^{c}f+\int_{c}^{b}f$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Basta refinar una partición +\begin_inset Formula $\pi\in{\cal P}([a,b])$ +\end_inset + + añadiéndole el punto +\begin_inset Formula $c$ +\end_inset + +. +\end_layout + +\begin_layout Description +Discontinuidades Si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + coincide con +\begin_inset Formula $f$ +\end_inset + + salvo en un número finito de puntos, entonces +\begin_inset Formula $g\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $\int_{a}^{b}f=\int_{a}^{b}g$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Supongamos que cambian en un punto +\begin_inset Formula $c\in[a,b]$ +\end_inset + +, y basta probar que +\begin_inset Formula $h:=g-f$ +\end_inset + + es integrable. + Ahora bien, +\begin_inset Formula $h$ +\end_inset + + es nula en todos los puntos salvo en +\begin_inset Formula $c$ +\end_inset + +, por lo que dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + podemos tomar +\begin_inset Formula $\pi\in{\cal P}[a,b]$ +\end_inset + + con +\begin_inset Formula $t_{i}-t_{i-1}\leq\frac{\varepsilon}{h(c)}$ +\end_inset + + y entonces +\begin_inset Formula $S(f,\pi,z_{i})\leq\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +El Teorema Fundamental del Cálculo +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +, llamamos +\series bold +integral indefinida +\series default + de +\begin_inset Formula $f$ +\end_inset + + a la función +\begin_inset Formula $F:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $F(x):=\int_{a}^{x}f$ +\end_inset + +. + El +\series bold +TEOREMA FUNDAMENTAL DEL CÁLCULO +\series default + afirma que, si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + es su integral indefinida, entonces +\begin_inset Formula $F$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c\in(a,b)$ +\end_inset + + entonces +\begin_inset Formula $F$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula $F'(c)=f(c)$ +\end_inset + +, y esto también ocurre con los extremos del intervalo y las correspondientes + derivadas laterales. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $M:=\sup\{|f(x)|\}_{x\in[a,b]}$ +\end_inset + +, por las propiedades de la integral, +\begin_inset Formula $|F(x)-F(y)|=\left|\int_{x}^{y}f\right|\leq M|x-y|$ +\end_inset + +, por lo que +\begin_inset Formula $F$ +\end_inset + + es uniformemente continua en +\begin_inset Formula $[a,b]$ +\end_inset + +, pues dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $\delta=\frac{\varepsilon}{M}$ +\end_inset + +, si +\begin_inset Formula $|x-y|\leq\delta$ +\end_inset + + entonces +\begin_inset Formula $|F(x)-F(y)|\leq\varepsilon$ +\end_inset + +. + Supongamos ahora que +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c\in(a,b)$ +\end_inset + +. + Sea +\begin_inset Formula $h>0$ +\end_inset + + con +\begin_inset Formula $c+h\in[a,b]$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\left|\frac{F(c+h)-F(c)}{h}-f(c)\right|=\left|\frac{\int_{a}^{c+h}f-\int_{a}^{c}f}{h}-\frac{1}{h}\int_{c}^{c+h}f(c)\right|=\left|\frac{1}{h}\int_{c}^{c+h}(f-f(c))\right|\leq\\ +\leq\frac{1}{h}\sup\{|f(t)-f(c)|\}_{t\in[c,c+h]}|h|=\sup\{|f(t)-f(c)|\}_{t\in[c,c+h]} +\end{multline*} + +\end_inset + +y como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +, el último miembro de la desigualdad tiende a 0 cuando +\begin_inset Formula $h$ +\end_inset + + tiende a 0, y lo mismo ocurre para +\begin_inset Formula $h<0$ +\end_inset + +. + Por tanto +\begin_inset Formula $F'(c)=\lim_{h\rightarrow0}\frac{F(c+h)-F(c)}{h}=f(c)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + +, decimos que +\begin_inset Formula $g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es una +\series bold +primitiva +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + si +\begin_inset Formula $g$ +\end_inset + + es derivable en +\begin_inset Formula $(a,b)$ +\end_inset + + y para todo +\begin_inset Formula $x\in(a,b)$ +\end_inset + + se tiene +\begin_inset Formula $g'(x)=f(x)$ +\end_inset + +. + Por el teorema fundamental del cálculo, toda +\begin_inset Formula $f$ +\end_inset + + continua en +\begin_inset Formula $[a,b]$ +\end_inset + + tiene primitivas en +\begin_inset Formula $[a,b]$ +\end_inset + +, donde la integral indefinida es una de ellas y el resto se obtienen sumando + a esta una constante. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $F$ +\end_inset + + es la integral indefinida de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es otra primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $(F-g)'(x)=F'(x)-g'(x)=f(x)-f(x)=0$ +\end_inset + + para +\begin_inset Formula $x\in(a,b)$ +\end_inset + +, y por el teorema del valor medio, +\begin_inset Formula $F-g$ +\end_inset + + es constante. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, la +\series bold +fórmula de Barrow +\series default + afirma que si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + admite una primitiva +\begin_inset Formula $g$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + entonces +\begin_inset Formula $\int_{a}^{b}f=g(b)-g(a)$ +\end_inset + +. + +\series bold +Demostración: +\series default +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\pi\equiv(t_{0}<\dots0,a\neq1$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\cos u\,u'\,dx=\sin u+C$ +\end_inset + +; +\begin_inset Formula $\int\sin u\,u'\,dx=-\cos u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\cosh u\,u'\,dx=\sinh u+C$ +\end_inset + +; +\begin_inset Formula $\int\sinh u\,u'\,dx=\cosh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sin^{2}u}dx=\int\frac{u'}{\sinh^{2}u}dx=-\cot u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{\cos^{2}u}dx=\int\frac{u'}{\cosh^{2}u}dx=\tan u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{1+u^{2}}dx=\arctan u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{1-u^{2}}dx=\arg\tanh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sqrt{1-u^{2}}}dx=\arcsin u+C=-\arccos u+C'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}+1}}dx=\arg\sinh u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}-1}}dx=\arg\cosh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +\cosh(x)=\frac{e^{x}+e^{-x}}{2} & \sinh(x)=\frac{e^{x}-e^{-x}}{2} & \cosh^{2}(x)-\sinh^{2}(x)=1\\ +\arg\cosh(x)=\ln(x+\sqrt{x^{2}-1}) & \arg\sinh(x)=\ln(x+\sqrt{x^{2}+1}) & \arg\tanh(x)=\frac{1}{2}\ln\frac{1+x}{1-x} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Subsection +Integración por partes +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g\in{\cal R}[a,b]$ +\end_inset + + con primitivas respectivas +\begin_inset Formula $F$ +\end_inset + + y +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG +\] + +\end_inset + +lo que suele escribirse como +\begin_inset Formula $\int u\,dv=uv-\int v\,du$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $(FG)'(x)=F'(x)G(x)+F(x)G'(x)=f(x)G(x)+F(x)g(x)$ +\end_inset + +, y por la fórmula de Barrow, +\begin_inset Formula $\int_{a}^{b}Fg+\int_{a}^{b}fG=\int_{a}^{b}(Fg+fG)=F(b)G(b)-F(a)G(a)$ +\end_inset + +, luego +\begin_inset Formula $\int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Cambio de variable +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $\varphi:[c,d]\rightarrow[a,b]\in{\cal C}^{1}[c,d]$ +\end_inset + + con +\begin_inset Formula $\varphi(c)=a$ +\end_inset + + y +\begin_inset Formula $\varphi(d)=b$ +\end_inset + +, sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua, entonces +\begin_inset Formula +\[ +\int_{a}^{b}f=\int_{c}^{d}(f\circ\varphi)\varphi' +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $F$ +\end_inset + + es una primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + entonces +\begin_inset Formula $F\circ\varphi$ +\end_inset + + lo es de +\begin_inset Formula $(f\circ\varphi)\varphi'$ +\end_inset + + en +\begin_inset Formula $[c,d]$ +\end_inset + +, luego +\begin_inset Formula $\int_{a}^{b}f=F(b)-F(a)=F(\varphi(d))-F(\varphi(c))=(F\circ\varphi)(d)-(F\circ\varphi)(c)=\int_{c}^{d}(f\circ\varphi)\varphi'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Esto da sentido a la notación de +\begin_inset Formula $\int_{a}^{b}f(x)dx:=\int_{a}^{b}f$ +\end_inset + +, porque entonces si +\begin_inset Formula $x=\varphi(t)$ +\end_inset + + es fácil recordar +\begin_inset Formula $dx=\varphi'(t)dt$ +\end_inset + + y entonces +\begin_inset Formula +\[ +\int_{a}^{b}f(x)dx=\int_{c}^{d}f(\varphi(t))\varphi'(t)dt +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Funciones racionales +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $P(x)$ +\end_inset + + y +\begin_inset Formula $Q(x)$ +\end_inset + + polinomios y queremos resolver +\begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx$ +\end_inset + +. + Si el grado de +\begin_inset Formula $P(x)$ +\end_inset + + es mayor o igual que el de +\begin_inset Formula $Q(x)$ +\end_inset + + hacemos +\begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx=\int C(x)dx+\int\frac{R(x)}{Q(x)}dx$ +\end_inset + + para que el grado del numerador sea menor que el del denominador. + Entonces descomponemos en fracciones simples. +\end_layout + +\begin_layout Standard +Descomponemos +\begin_inset Formula $Q(x)$ +\end_inset + + como +\begin_inset Formula $Q(x)=\prod_{i=1}^{r}(x-a_{i})^{m_{i}}\prod_{i=1}^{s}(x^{2}+p_{i}x+q_{i})^{n_{i}}$ +\end_inset + +, donde +\begin_inset Formula $q_{i}>\frac{p_{i}^{2}}{4}$ +\end_inset + + para que los factores sean irreducibles. + Entonces (si el grado de +\begin_inset Formula $P(x)$ +\end_inset + + es menor que el de +\begin_inset Formula $Q(x)$ +\end_inset + +) podemos expresar la fracción como +\begin_inset Formula +\[ +\frac{P(x)}{Q(x)}=\sum_{i=1}^{r}\sum_{j=1}^{m_{i}}\frac{A_{ij}}{(x-a_{i})^{j}}+\sum_{i=1}^{M}\sum_{j=1}^{n_{i}}\frac{M_{ij}x+N_{ij}}{(x^{2}+p_{i}x+q_{i})^{j}} +\] + +\end_inset + +Resolvemos los +\begin_inset Formula $A_{k,i}$ +\end_inset + +, +\begin_inset Formula $M_{k,i}$ +\end_inset + +, +\begin_inset Formula $N_{k,i}$ +\end_inset + + y nos queda hallar la integral de cada sumando como sigue: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{A}{x-a}dx=A\ln|x-a|+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{A}{(x-a)^{n}}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C$ +\end_inset + +, donde +\begin_inset Formula $n\in2,3,\dots$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{Mx+N}{x^{2}+px+q}dx=\frac{M}{2}\ln\left(\left(x+\frac{p}{2}\right)^{2}+c^{2}\right)+\frac{N-\frac{Mp}{2}}{c}\arctan\left(\frac{x+\frac{p}{2}}{c}\right)+C$ +\end_inset + +, donde +\begin_inset Formula $c=\frac{\sqrt{4q-p^{2}}}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Funciones que contienen +\begin_inset Formula $\cos x$ +\end_inset + + y +\begin_inset Formula $\sin x$ +\end_inset + + +\end_layout + +\begin_layout Standard +En general, haremos +\begin_inset Formula $t=\tan\frac{x}{2}$ +\end_inset + + y entonces +\begin_inset Formula +\begin{eqnarray*} +\cos x=\frac{\cos(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{1-\tan^{2}\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{1-t^{2}}{1+t^{2}}\\ +\sin x=\frac{\sin(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{2\tan\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{2t}{1+t^{2}}\\ +x=2\arctan t & \text{ y } & dx=\frac{2}{1+t^{2}}dt +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Si la función es de la forma +\begin_inset Formula $f(x)=g(\sin x)\cos x$ +\end_inset + +, siendo +\begin_inset Formula $g$ +\end_inset + + una función racional, hacemos +\begin_inset Formula $t=\sin x$ +\end_inset + +, y si es +\begin_inset Formula $f(x)=g(\cos x)\sin x$ +\end_inset + + hacemos +\begin_inset Formula $t=\cos x$ +\end_inset + +. + Si es +\begin_inset Formula $f(x)=g(\tan x)$ +\end_inset + + hacemos +\begin_inset Formula $\tan x=t$ +\end_inset + +, y podemos llegar a esta situación cuando al sustituir +\begin_inset Formula $\sin x$ +\end_inset + + por +\begin_inset Formula $\cos x\tan x$ +\end_inset + + quedan solo potencias pares de +\begin_inset Formula $\cos x$ +\end_inset + +, y hacemos +\begin_inset Formula $\cos^{2}x=\frac{1}{1+\tan^{2}x}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En el caso +\begin_inset Formula $f(x)=\cos^{n}x\sin^{m}x$ +\end_inset + +, si +\begin_inset Formula $n$ +\end_inset + + es impar hacemos +\begin_inset Formula $t=\sin x$ +\end_inset + +, si +\begin_inset Formula $m$ +\end_inset + + es impar, +\begin_inset Formula $t=\cos x$ +\end_inset + +, y si ambos son pares, usamos +\begin_inset Formula $\cos^{2}x=\frac{1+\cos(2x)}{2}$ +\end_inset + + y +\begin_inset Formula $\sin^{2}x=\frac{1-\cos(2x)}{2}$ +\end_inset + + para +\begin_inset Quotes cld +\end_inset + +reducir el grado +\begin_inset Quotes crd +\end_inset + +. +\end_layout + +\begin_layout Subsection +Funciones de la forma +\begin_inset Formula $f(e^{x})$ +\end_inset + + +\end_layout + +\begin_layout Standard +Hacemos el cambio +\begin_inset Formula $t=e^{x}$ +\end_inset + + y +\begin_inset Formula $dt=e^{x}dx$ +\end_inset + +, y esto también sirve para el coseno y seno hiperbólicos ( +\begin_inset Formula $\cosh$ +\end_inset + + y +\begin_inset Formula $\sinh$ +\end_inset + +). +\end_layout + +\begin_layout Subsection +Funciones que contienen +\begin_inset Formula $\sqrt{ax^{2}+2bx+c}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $d:=\frac{ac-b^{2}}{a}$ +\end_inset + + y se tiene +\begin_inset Formula $ax^{2}+2bx+c=a\left(x+\frac{b}{a}\right)^{2}+d$ +\end_inset + +. + Hacemos entonces el cambio de variable +\begin_inset Formula $t=x+\frac{b}{a}$ +\end_inset + + y a continuación: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>0$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=d\tan^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{d\tan^{2}u+d}=\sqrt{d}\sqrt{1+\tan^{2}u}=\sqrt{d}\sqrt{\sec^{2}u}=\sqrt{d}\sec u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{\frac{d}{a}}\sec^{2}u\,du$ +\end_inset + +. + También podemos hacer +\begin_inset Formula $at^{2}=d\sinh^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{d\sinh^{2}u+d}=\sqrt{d}\sqrt{\sinh^{2}u+1}=\sqrt{d}\cosh u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{\frac{d}{a}}\cosh u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Si +\begin_inset Formula $a>0$ +\end_inset + + y +\begin_inset Formula $d<0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=-d\sec^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{-d\sec^{2}u+d}=\sqrt{-d}\sqrt{\sec^{2}u+1}=\sqrt{-d}\tan u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sec u\tan u\,du$ +\end_inset + +. + También podemos hacer +\begin_inset Formula $at^{2}=-d\cosh^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{-d\cosh^{2}u+d}=\sqrt{-d}\sqrt{\cosh^{2}u-1}=\sqrt{-d}\sinh u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sinh u\,du$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<0$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=-d\sin^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{-d\sin^{2}u+d}=\sqrt{d}\sqrt{1-\sin^{2}u}=\sqrt{d}\cos u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\cos u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Section +Aplicaciones +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continuas, si +\begin_inset Formula $f(a)=g(a)$ +\end_inset + +, +\begin_inset Formula $f(b)=g(b)$ +\end_inset + + y +\begin_inset Formula $f(x)\geq g(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, se define el +\series bold +área encerrada +\series default + por las gráficas de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + como +\begin_inset Formula $\int_{a}^{b}(f(x)-g(x))\,dx$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}\in{\cal C}^{1}[a,b]$ +\end_inset + +, la +\series bold +longitud de la curva +\series default + +\begin_inset Formula $C=\{(x,f(x))\}_{x\in[a,b]}$ +\end_inset + + viene dada por +\begin_inset Formula $L=\int_{a}^{b}\sqrt{1+f'(x)^{2}}\,dx$ +\end_inset + +. + +\series bold +Interpretación: +\series default + Sea +\begin_inset Formula $\pi\equiv(a=x_{0}<\dots0,\exists b_{0}\in(a,b):\forall x_{1},x_{2}\in(b_{0},b):x_{1}0,\exists b_{0}\in(a,b):\forall x_{1},x_{2}\in(b_{0},b):x_{1}0$ +\end_inset + + con +\begin_inset Formula $\varepsilon1$ +\end_inset + + con +\begin_inset Formula $\lim_{t\rightarrow\infty}f(t)t^{\alpha}$ +\end_inset + + finito, +\begin_inset Formula $\int_{a}^{\infty}f(t)\,dt$ +\end_inset + + converge, mientras que si existe +\begin_inset Formula $\alpha\leq1$ +\end_inset + + con +\begin_inset Formula $\lim_{t\rightarrow\infty}f(t)t^{\alpha}$ +\end_inset + + no nulo, la integral diverge. +\end_layout + +\begin_layout Subsection +Convergencia absoluta +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f$ +\end_inset + + localmente integrable en +\begin_inset Formula $[a,b)$ +\end_inset + +, decimos que la integral impropia de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $[a,b)$ +\end_inset + + es +\series bold +absolutamente convergente +\series default + si +\begin_inset Formula $\int_{a}^{b}|f(t)|\,dt$ +\end_inset + + es convergente. + La convergencia absoluta implica la convergencia. + +\series bold +Demostración: +\series default + Por el criterio de convergencia de Cauchy aplicado a +\begin_inset Formula $|f(t)|$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $b_{0}\in(a,b)$ +\end_inset + + tal que si +\begin_inset Formula $b_{0}