From 195eb24b98dd84bc266e9af117db42c7eb784c8a Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Mon, 24 Feb 2020 13:03:48 +0100 Subject: Cuatrimestre 5 --- fvc/n2.lyx | 1670 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1670 insertions(+) create mode 100644 fvc/n2.lyx (limited to 'fvc/n2.lyx') diff --git a/fvc/n2.lyx b/fvc/n2.lyx new file mode 100644 index 0000000..b18a007 --- /dev/null +++ b/fvc/n2.lyx @@ -0,0 +1,1670 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Teorema de Cauchy en dominios estrellados +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Cauchy-Goursat: +\series default + Sea +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c:\mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=0. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $\gamma:=[a,b,c,a]$ +\end_inset + +, +\begin_inset Formula $\Delta:=\Delta(a,b,c)$ +\end_inset + +, +\begin_inset Formula $a':=\frac{b+c}{2}$ +\end_inset + +, +\begin_inset Formula $b':=\frac{a+c}{2}$ +\end_inset + +, +\begin_inset Formula $c':=\frac{a+b}{2}$ +\end_inset + + e +\begin_inset Formula +\[ +I:=\int_{\gamma}f=\int_{[a,c',b',a]}f+\int_{[c',b,a',c']}f+\int_{[a',c,b',a']}f+\int_{[b',c',a',b']}f. +\] + +\end_inset + +Sean +\begin_inset Formula $J_{1},\dots,J_{4}$ +\end_inset + + las cuatro integrales a la derecha, +\begin_inset Formula $\sigma_{1},\dots,\sigma_{4}$ +\end_inset + + las correspondientes curvas y +\begin_inset Formula $T_{1},\dots,T_{4}$ +\end_inset + + los triángulos definidos por estas curvas. + Entonces: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $|J_{k}|:=\max_{i}|J_{i}|$ +\end_inset + +, +\begin_inset Formula $|I|\leq4|J_{k}|$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\ell(\sigma_{1})=\dots=\ell(\sigma_{4})=\frac{1}{2}\ell(\gamma)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\ell(\sigma_{1})=|a-c'|+|c'-b'|+|b'-a|=\left|a-\frac{a+b}{2}\right|+\left|\frac{a+b}{2}-\frac{a+c}{2}\right|+\left|\frac{a+c}{2}-a\right|=\left|\frac{a-b}{2}\right|+\left|\frac{b-c}{2}\right|+\left|\frac{c-a}{2}\right|=\frac{1}{2}(|a-b|+|b-c|+|c-a|)=\frac{1}{2}\ell(\gamma)$ +\end_inset + +. + Para el resto de curvas se hace algo análogo. +\end_layout + +\end_deeper +\begin_layout Itemize +Sea +\begin_inset Formula $d.(S)$ +\end_inset + + el diámetro de +\begin_inset Formula $S\subseteq\Omega$ +\end_inset + +, +\begin_inset Formula $D(T_{1})=\dots=D(T_{4})=\frac{1}{2}D(\Delta)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $T_{1}$ +\end_inset + +, +\begin_inset Formula $F(x):=\frac{x+a}{2}$ +\end_inset + + es una biyección de +\begin_inset Formula $\Delta$ +\end_inset + + a +\begin_inset Formula $T_{1}$ +\end_inset + +, pues si +\begin_inset Formula $x:=ra+sb+tc$ +\end_inset + +, +\begin_inset Formula $F(x):=\frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$ +\end_inset + +. + Entonces +\begin_inset Formula $D(T_{1})=\sup_{x,y\in T_{1}}|x-y|=\sup_{x,y\in\Delta}|F(x)-F(y)|=\sup_{x,y\in\Delta}\left|\frac{x+a}{2}-\frac{y+a}{2}\right|=\sup_{x,y\in\Delta}\frac{|x+y|}{2}=\frac{1}{2}D(\Delta)$ +\end_inset + +. + Para los otros triángulos se hace de forma análoga, usando para +\begin_inset Formula $T_{4}$ +\end_inset + + la biyección +\begin_inset Formula $F(x):=\frac{a+b+c-x}{2}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sean entonces +\begin_inset Formula $I_{1}:=\max_{i}|J_{i}|$ +\end_inset + +, +\begin_inset Formula $\gamma_{1}:=[a_{1},b_{1},c_{1},a_{1}]$ +\end_inset + + la curva correspondiente a +\begin_inset Formula $I_{1}$ +\end_inset + + y +\begin_inset Formula $\Delta_{1}:=\Delta(a_{1},b_{1},c_{1})$ +\end_inset + +, con lo que +\begin_inset Formula $|I|\leq4|I_{1}|$ +\end_inset + +, +\begin_inset Formula $\ell(\gamma_{1})=\frac{1}{2}\ell(\gamma)$ +\end_inset + + y +\begin_inset Formula $D(\Delta_{1})=\frac{1}{2}\Delta$ +\end_inset + +. + Repitiendo este proceso se obtienen sucesiones donde +\begin_inset Formula $|I|\leq4^{n}|I_{n}|$ +\end_inset + +, +\begin_inset Formula $\ell(\gamma_{n})=\frac{1}{2^{n}}\ell(\gamma)$ +\end_inset + + y +\begin_inset Formula $D(\Delta_{n})=\frac{1}{2^{n}}D(\Delta)$ +\end_inset + +. + Al ser +\begin_inset Formula $(\Delta_{n})_{n}$ +\end_inset + + una sucesión decreciente de cerrados no vacíos donde el diámetro tiende + a 0, existe un único +\begin_inset Formula $\alpha\in\bigcap_{n}\Delta_{n}$ +\end_inset + +. + Sea +\begin_inset Formula $p(z):=f(\alpha)+f'(\alpha)(z-\alpha)$ +\end_inset + + una función polinómica y por tanto con primitiva, entonces +\begin_inset Formula +\[ +I_{n}=\int_{\gamma_{n}}f=\int_{\gamma_{n}}f-\int_{\gamma_{n}}p=\int_{\gamma_{n}}(f(z)-f(\alpha)-f'(\alpha)(z-\alpha))dz. +\] + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $\alpha$ +\end_inset + + existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que +\begin_inset Formula $D(\alpha,\delta)\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $\forall z\in D(\alpha,\delta),|f(z)-f(\alpha)-f'(\alpha)(z-\alpha)|\leq\varepsilon|z-\alpha|$ +\end_inset + +. + Dado +\begin_inset Formula $n$ +\end_inset + + con +\begin_inset Formula $D(\Delta_{n})<\delta$ +\end_inset + +, +\begin_inset Formula $\Delta_{n}\subseteq D(\alpha,\delta)$ +\end_inset + + y +\begin_inset Formula +\begin{multline*} +|I|\leq4^{n}|I_{n}|\leq4^{n}\ell(\gamma_{n})\max_{z\in\gamma_{n}^{*}}|f(z)-f(\alpha)+f'(\alpha)(z-\alpha)|\leq4^{n}\ell(\gamma_{n})\varepsilon\max_{z\in\gamma_{n}^{*}}|z-\alpha|\leq\\ +\leq4^{n}\ell(\gamma_{n})\varepsilon D(\Delta_{n})=4^{n}\varepsilon\frac{1}{2^{n}}\ell(\gamma)\frac{1}{2^{n}}D(\Delta)=\varepsilon\ell(\gamma)D(\Delta), +\end{multline*} + +\end_inset + +y haciendo tender +\begin_inset Formula $\varepsilon\to0$ +\end_inset + + se obtiene el resultado. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Cauchy para dominios estrellados: +\series default + Sea +\begin_inset Formula $\Omega$ +\end_inset + + un dominio estrellado en +\begin_inset Formula $z_{0}$ +\end_inset + + y +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + +, entonces +\begin_inset Formula +\[ +F(z):=\int_{[z_{0},z]}f +\] + +\end_inset + +es una primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a\in\Omega$ +\end_inset + +, +\begin_inset Formula $\rho>0$ +\end_inset + + y +\begin_inset Formula $z\in D(a,\rho)$ +\end_inset + +, como +\begin_inset Formula $[a,z]\subseteq\Omega$ +\end_inset + +, +\begin_inset Formula $[z_{0},b]\subseteq\Omega$ +\end_inset + + para todo +\begin_inset Formula $b\in[a,z]$ +\end_inset + + y +\begin_inset Formula $\Delta(z_{0},a,z)\subseteq\Omega$ +\end_inset + +. + Por el teorema de Cauchy-Goursat, +\begin_inset Formula +\[ +0=\int_{[z_{0},z,a,z_{0}]}f=\int_{[z_{0},z]}f+\int_{[z,a]}f+\int_{[a,z_{0}]}f=F(z)-F(a)-\int_{[z,a]}f, +\] + +\end_inset + +luego si +\begin_inset Formula $z\neq a$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{F(z)-F(a)-f(a)(z-a)}{z-a}=\frac{\int_{[z,a]}f-f(a)(z-a)}{z-a}=\frac{\int_{[z,a]}(f(w)-f(a))dw}{z-a}, +\] + +\end_inset + +con lo que +\begin_inset Formula +\[ +\left|\frac{F(z)-F(a)}{z-a}-f(a)\right|=\left|\frac{\int_{[z,a]}(f(w)-f(a))dw}{z-a}\right|\leq\max_{w\in[a,z]^{*}}|f(w)-f(a)|. +\] + +\end_inset + +Como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $a$ +\end_inset + +, haciendo +\begin_inset Formula $z\to a$ +\end_inset + + este máximo tiende a 0 y se obtiene +\begin_inset Formula $F'(a)=f(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Cauchy-Goursat +\begin_inset Quotes cld +\end_inset + +light +\begin_inset Quotes crd +\end_inset + +: +\series default + Sean +\begin_inset Formula $\Omega$ +\end_inset + + un abierto, +\begin_inset Formula $\alpha\in\Omega$ +\end_inset + +, +\begin_inset Formula $f\in{\cal C}(\Omega),{\cal H}(\Omega\setminus\{\alpha\})$ +\end_inset + +, y +\begin_inset Formula $\Delta(a,b,c)\subseteq\Omega$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=0. +\] + +\end_inset + + +\series bold +Demostración: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha\notin\Delta(a,b,c)$ +\end_inset + +, podemos tomar como abierto +\begin_inset Formula $\Omega\setminus\{\alpha\}$ +\end_inset + + y aplicar Cauchy-Goursat. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha$ +\end_inset + + es un vértice, por ejemplo, +\begin_inset Formula $\alpha=a$ +\end_inset + +, sean +\begin_inset Formula $c_{\rho}:=(1-\rho)a+\rho b$ +\end_inset + + y +\begin_inset Formula $b_{\rho}:=(1-\rho)a+\rho c$ +\end_inset + + para +\begin_inset Formula $\rho\in[0,1]$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=\int_{[a,c_{\rho},b_{\rho},a]}f+\int_{[c_{\rho},b,c,c_{\rho}]}+\int_{[c,b_{\rho},c_{\rho},c]}f=\int_{[a,c_{\rho},b_{\rho},a]}f, +\] + +\end_inset + +dado que los otros dos sumandos se anulan por el caso anterior. + Entonces +\begin_inset Formula +\[ +\left|\int_{[a,b,c,a]}f\right|=\left|\int_{[a,c_{\rho},b_{\rho},a]}f\right|\leq\max_{z\in\Delta(a,b,c)}|f(z)|\rho(|a-b|+|b-c|+|c-a|), +\] + +\end_inset + +y haciendo tender +\begin_inset Formula $\rho\to0$ +\end_inset + + se obtiene el resultado. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha$ +\end_inset + + está en un lado del triángulo, por ejemplo +\begin_inset Formula $\alpha\subseteq[a,b]$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=\int_{[a,\alpha,c,a]}f+\int_{[c,\alpha,b,c]}f, +\] + +\end_inset + +y cada sumando se anula por el caso anterior. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha$ +\end_inset + + está en el interior del triángulo, sea +\begin_inset Formula $p$ +\end_inset + + el punto en la intersección de la recta +\begin_inset Formula $a\alpha$ +\end_inset + + con +\begin_inset Formula $[b,c]$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=\int_{[a,b,p,a]}f+\int_{[a,p,c,a]}f +\] + +\end_inset + +y cada sumando se anula por el caso anterior. +\end_layout + +\begin_layout Standard +De aquí se obtiene el +\series bold +teorema de Cauchy para dominios estrellados +\begin_inset Quotes cld +\end_inset + +light +\begin_inset Quotes crd +\end_inset + + +\series default +, que afirma que si +\begin_inset Formula $\Omega$ +\end_inset + + es un dominio estrellado en +\begin_inset Formula $z_{0}$ +\end_inset + +, +\begin_inset Formula $\alpha\in\Omega$ +\end_inset + + y +\begin_inset Formula $f\in{\cal C}(\Omega),{\cal H}(\Omega\setminus\{\alpha\})$ +\end_inset + + entonces +\begin_inset Formula +\[ +F(z):=\int_{[z_{0},z]}f +\] + +\end_inset + +es una primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Section +Funciones holomorfas y analíticas +\end_layout + +\begin_layout Standard + +\series bold +Fórmula de Cauchy para una circunferencia: +\series default + Sea +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $\overline{D}(a,R)\subseteq\Omega$ +\end_inset + +, para +\begin_inset Formula $z\in D(a,R)$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)=\frac{1}{2\pi i}\int_{C(a,R)}\frac{f(w)}{w-z}dw. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $\rho>R$ +\end_inset + + con +\begin_inset Formula $D(a,\rho)\subseteq\Omega$ +\end_inset + +, +\begin_inset Formula $z\in D(a,R)$ +\end_inset + + y +\begin_inset Formula +\[ +g(w):=\begin{cases} +\frac{f(w)-f(z)}{w-z} & \text{si }w\neq z,\\ +f'(z) & \text{si }w=z. +\end{cases} +\] + +\end_inset + +Como +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $z$ +\end_inset + +, +\begin_inset Formula $g$ +\end_inset + + es continua en +\begin_inset Formula $D(a,\rho)$ +\end_inset + +, y es derivable en +\begin_inset Formula $D(a,\rho)\setminus\{z\}$ +\end_inset + +, luego por el teorema de Cauchy para dominios estrellados +\begin_inset Quotes cld +\end_inset + +light +\begin_inset Quotes crd +\end_inset + +, +\begin_inset Formula +\[ +0=\int_{C(a,R)}g=\int_{C(a,R)}\frac{f(w)-f(z)}{w-z}dw=\int_{C(a,R)}\frac{f(w)}{w-z}dw-f(z)\int_{C(a,R)}\frac{1}{w-z}dw. +\] + +\end_inset + +Ahora bien, para +\begin_inset Formula $w\in C(a,R)^{*}$ +\end_inset + +, como +\begin_inset Formula $|z-a|0$ +\end_inset + + y +\begin_inset Formula +\[ +\int_{C(a,R)}\frac{1}{w-z}dw=\int_{C(a,R)}\frac{1}{w-a}dw=\int_{-\pi}^{\pi}\frac{1}{a+Re^{it}-a}Rie^{it}dt=\int_{-\pi}^{\pi}idt=2\pi i. +\] + +\end_inset + +Sustituyendo, +\begin_inset Formula +\[ +\int_{C(a,R)}\frac{f(w)}{w-z}dw-2\pi if(z)=0, +\] + +\end_inset + +y despejando se obtiene el resultado. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Taylor: +\series default + Sean +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + +, +\begin_inset Formula $\overline{D}(a,R)\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula +\[ +c_{n}:=\frac{1}{2\pi i}\int_{C(a,R)}\frac{f(w)}{(w-a)^{n+1}}dw +\] + +\end_inset + +para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f(z):=\sum_{n}c_{n}(z-a)^{n} +\] + +\end_inset + +para todo +\begin_inset Formula $z\in D(a,R)$ +\end_inset + +. + En particular, +\begin_inset Formula $f$ +\end_inset + + es analítica en +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $f^{(n)}(a)=n!c_{n}$ +\end_inset + + para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y los +\begin_inset Formula $c_{n}$ +\end_inset + + no dependen del radio escogido. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $z\in D(a,R)$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{f(w)}{w-z}=\frac{f(w)}{w-a-(z-a)}=\frac{f(w)}{w-a}\frac{1}{1-\frac{z-a}{w-a}}=\frac{f(w)}{w-a}\sum_{n}\left(\frac{z-a}{w-a}\right)^{n}=\sum_{n}\frac{f(w)}{(w-a)^{n+1}}(z-a)^{n}. +\] + +\end_inset + +Como +\begin_inset Formula +\[ +\frac{|f(w)|}{|w-a|^{n+1}}|z-a|^{n}\leq\alpha_{n}:=\frac{\max_{w\in C(a,R)^{*}}|f(w)|}{R}\left(\frac{|z-a|}{R}\right)^{n} +\] + +\end_inset + +y +\begin_inset Formula $\sum_{n}\alpha_{n}$ +\end_inset + + es convergente por ser una serie geométrica de razón menor que 1, por el + criterio de Weierstrass, la serie converge uniformemente en +\begin_inset Formula $C(a,R)^{*}$ +\end_inset + + y, por la fórmula de Cauchy, +\begin_inset Formula +\begin{multline*} +f(z)=\frac{1}{2\pi i}\int_{C(a,R)}\frac{f(w)}{w-z}dw=\frac{1}{2\pi i}\int_{C(a,R)}\sum_{n}\frac{f(w)}{(w-a)^{n+1}}(z-a)^{n}dw=\\ +=\sum_{n}\left(\frac{1}{2\pi i}\int_{C(a,R)}\frac{f(w)}{(w-a)^{n+1}}dw\right)(z-a)^{n}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Morera: +\series default + Sea +\begin_inset Formula $f\in{\cal C}(\Omega)$ +\end_inset + +, +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + si y sólo si +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=0 +\] + +\end_inset + +para todo +\begin_inset Formula $\Delta(a,b,c)\subseteq\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Teorema de Cauchy-Goursat. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $D(z_{0},R)\subseteq\Omega$ +\end_inset + + un dominio estrellado, como la integral de +\begin_inset Formula $f$ +\end_inset + + sobre cualquier triángulo contenido en el disco es 0, por la demostración + del teorema de Cauchy para dominios estrellados, +\begin_inset Formula +\[ +F(z)=\int_{[z_{0},z]}f +\] + +\end_inset + +es una primitiva de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $D(z_{0},R)$ +\end_inset + +, esto es, +\begin_inset Formula $\forall z\in D(z_{0},R),F'(z)=f(z)$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es la derivada de una función holomorfa en +\begin_inset Formula $D(z_{0},R)$ +\end_inset + + y en particular +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $z_{0}$ +\end_inset + +, pero como +\begin_inset Formula $z_{0}\in\Omega$ +\end_inset + + es arbitrario, +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Propiedades de funciones holomorfas +\end_layout + +\begin_layout Standard + +\series bold +Desigualdad de Cauchy: +\series default + Sean +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $\overline{D}(a,R)\subseteq\Omega$ +\end_inset + +, para +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{|f^{(k)}(a)|}{k!}\leq\frac{\max_{w\in C(a,R)^{*}}|f(w)|}{R^{k}}. +\] + +\end_inset + +En efecto, tomando módulos sobre la fórmula de la derivada del teorema de + Taylor, +\begin_inset Formula +\[ +\frac{|f^{(k)}(a)|}{k!}=\frac{1}{2\pi}\int_{C(a,R)}\frac{f(w)}{(w-a)^{k+1}}dw\leq\frac{1}{2\pi}\max_{w\in C(a,R)^{*}}\left|\frac{f(w)}{(w-a)^{k+1}}\right|2\pi R=\frac{1}{R^{k}}\max_{w\in C(a,R)^{*}}|f(w)|. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Liouville: +\series default + Toda función entera acotada es constante. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $f\in{\cal H}(\mathbb{C})$ +\end_inset + + para la que existe +\begin_inset Formula $M>0$ +\end_inset + + con +\begin_inset Formula $|f(z)|0$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{|f^{(n)}(0)|}{n!}\leq\frac{\max_{w\in C(a,R)^{*}}|f(w)|}{R^{n}}\leq\frac{M}{R^{n}}, +\] + +\end_inset + +y tomando límites cuando +\begin_inset Formula $R\to+\infty$ +\end_inset + + tenemos que +\begin_inset Formula $f^{(n)}(0)=0$ +\end_inset + + para todo +\begin_inset Formula $n\geq1$ +\end_inset + + y por tanto +\begin_inset Formula $f(z)=f(0)$ +\end_inset + + para todo +\begin_inset Formula $z$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema fundamental del álgebra: +\series default + +\begin_inset Formula $\mathbb{C}$ +\end_inset + + es algebraicamente cerrado, esto es, todo polinomio complejo de grado +\begin_inset Formula $n$ +\end_inset + + es la forma +\begin_inset Formula $p(x)=\alpha\prod_{k=1}^{n}(x-a_{k})$ +\end_inset + + con +\begin_inset Formula $\alpha,a_{1},\dots,a_{n}\in\mathbb{C}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Basta ver que todo polinomio complejo no constante tiene alguna raíz, pues + el resto se obtiene por inducción. + Sea +\begin_inset Formula $p$ +\end_inset + + un polinomio de este tipo y supongamos que +\begin_inset Formula $\forall z\in\mathbb{C},p(z)\neq0$ +\end_inset + +. + Sea +\begin_inset Formula $f(z):=\frac{1}{p(z)}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es entera por serlo +\begin_inset Formula $p$ +\end_inset + + y, como +\begin_inset Formula $\lim_{z\to+\infty}f(z)=0$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es acotada y, por el teorema de Liouville, constante, y por tanto +\begin_inset Formula $p$ +\end_inset + + es constante. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +La imagen de una función entera no constante es densa en el plano. + +\series bold +Demostración: +\series default + Supongamos que existe +\begin_inset Formula $\alpha\in\mathbb{C}\setminus\overline{f(\mathbb{C})}$ +\end_inset + +, con lo que existe +\begin_inset Formula $\rho>0$ +\end_inset + + tal que +\begin_inset Formula $\overline{D}(\alpha,\rho)\cap f(\mathbb{C})=\emptyset$ +\end_inset + +, esto es, +\begin_inset Formula $|f(z)-\alpha|>\rho$ +\end_inset + + para +\begin_inset Formula $z\in\mathbb{C}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $g(z):=\frac{1}{f(z)-\alpha}$ +\end_inset + + una función entera, como +\begin_inset Formula $|g(z)|=\frac{1}{|f(z)-\alpha|}<\frac{1}{\rho}$ +\end_inset + +, +\begin_inset Formula $g$ +\end_inset + + es acotada, luego +\begin_inset Formula $g$ +\end_inset + + es constante y por tanto +\begin_inset Formula $f$ +\end_inset + + también. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de extensión de Riemann: +\series default + Sean +\begin_inset Formula $\Omega$ +\end_inset + + un abierto, +\begin_inset Formula $\alpha\in\Omega$ +\end_inset + + y +\begin_inset Formula $f\in{\cal H}(\Omega\setminus\{\alpha\})$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene una extensión holomorfa a +\begin_inset Formula $\Omega$ +\end_inset + + si y sólo si tiene una extensión continua a +\begin_inset Formula $\Omega$ +\end_inset + +, si y sólo si está acotada en un entorno reducido de +\begin_inset Formula $\alpha$ +\end_inset + +, si y sólo si +\begin_inset Formula $\lim_{z\to\alpha}(z-\alpha)f(z)=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2\implies3\implies4]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies1]$ +\end_inset + + Sea +\begin_inset Formula +\[ +F(z):=\begin{cases} +(z-\alpha)^{2}f(z) & \text{si }z\neq\alpha,\\ +0 & \text{si }z=\alpha. +\end{cases} +\] + +\end_inset + + +\begin_inset Formula $F$ +\end_inset + + es holomorfa en +\begin_inset Formula $\Omega\setminus\{\alpha\}$ +\end_inset + +, pero +\begin_inset Formula +\[ +F'(\alpha)=\lim_{z\to\alpha}\frac{F(z)-F(\alpha)}{z-\alpha}=\lim_{z\to\alpha}(z-\alpha)f(z)=0, +\] + +\end_inset + +luego +\begin_inset Formula $F\in{\cal H}(\Omega)$ +\end_inset + +. + Sea +\begin_inset Formula $D(\alpha,\rho)\subseteq\Omega$ +\end_inset + +, por el teorema de Taylor, sea +\begin_inset Formula $c_{n}:=\frac{F^{(n)}(\alpha)}{n!}$ +\end_inset + +, como +\begin_inset Formula $c_{0}=c_{1}=0$ +\end_inset + +, para +\begin_inset Formula $z\in D(\alpha,\rho)$ +\end_inset + +, +\begin_inset Formula +\[ +F(z)=\sum_{n=2}^{\infty}c_{n}(z-\alpha)^{n}=(z-\alpha)^{2}\sum_{n=2}^{\infty}c_{n}(z-\alpha)^{n-2}=(z-\alpha)^{2}\sum_{n=0}^{\infty}c_{n+2}(z-\alpha)^{n}, +\] + +\end_inset + +luego si +\begin_inset Formula $z\in D(\alpha,\rho)\setminus\{\alpha\}$ +\end_inset + +, +\begin_inset Formula $f(z)=\sum_{n}c_{n+2}(z-\alpha)^{n}$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +g(z):=\begin{cases} +f(z) & \text{si }z\neq\alpha,\\ +c_{2} & \text{si }z=\alpha +\end{cases} +\] + +\end_inset + +es una extensión de +\begin_inset Formula $f$ +\end_inset + + expresable como suma de potencias, y por tanto derivable, en +\begin_inset Formula $D(\alpha,\rho)$ +\end_inset + +, por lo que es derivable en +\begin_inset Formula $\alpha$ +\end_inset + + y por tanto una extensión holomorfa de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de convergencia de Weierstrass: +\series default + Sean +\begin_inset Formula $\{f_{n}\}_{n}\subseteq{\cal H}(\Omega)$ +\end_inset + +, si +\begin_inset Formula $(f_{n})_{n}$ +\end_inset + + converge uniformemente en subconjuntos compactos de +\begin_inset Formula $\Omega$ +\end_inset + + y +\begin_inset Formula $f(z):=\lim_{n}f_{n}(z)$ +\end_inset + + para +\begin_inset Formula $z\in\Omega$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es holomorfa en +\begin_inset Formula $\Omega$ +\end_inset + + si y sólo si para cada +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $(f_{n}^{(k)})_{n}$ +\end_inset + + converge uniformemente a +\begin_inset Formula $f^{(k)}$ +\end_inset + + en subconjuntos compactos de +\begin_inset Formula $\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Como el límite uniforme de funciones continuas es continuo, +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $\Omega$ +\end_inset + +. + Sea +\begin_inset Formula $\Delta(a,b,c)\subseteq\Omega$ +\end_inset + +, como +\begin_inset Formula $[a,b,c,a]^{*}$ +\end_inset + + es compacto y la integral respeta la convergencia uniforme, +\begin_inset Formula +\[ +\int_{[a,b,c,a]}f=\lim_{n}\int_{[a,b,c,a]}f_{n}=0 +\] + +\end_inset + +por el teorema de Cauchy-Goursat, pues las +\begin_inset Formula $f_{n}$ +\end_inset + + son holomorfas. + Como el triángulo es arbitrario, por el teorema de Morera, +\begin_inset Formula $f$ +\end_inset + + es holomorfa en +\begin_inset Formula $\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $K\subseteq\Omega$ +\end_inset + + compacto, +\begin_inset Formula $0<\rho0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq0$ +\end_inset + + es +\begin_inset Formula $\max_{w\in H}|f_{n}(w)-f(w)|\leq\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $|f_{n}^{(k)}(a)-f^{(k)}(a)|\leq\frac{k!}{\rho^{k}}\varepsilon$ +\end_inset + + para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + y +\begin_inset Formula $a\in K$ +\end_inset + + y por tanto +\begin_inset Formula $\max_{a\in K}|f_{n}^{(k)}(a)-f^{(k)}(a)|\leq\frac{k!}{\rho^{k}}\varepsilon$ +\end_inset + +, de donde +\begin_inset Formula $(f_{n}^{(k)})_{n}\to f^{(k)}$ +\end_inset + +. +\end_layout + +\end_body +\end_document -- cgit v1.2.3