From c34b47089a133e58032fe4ea52f61efacaf5f548 Mon Sep 17 00:00:00 2001 From: Juan Marin Noguera Date: Sun, 4 Dec 2022 22:49:17 +0100 Subject: Oops --- fvc/n3.lyx | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'fvc/n3.lyx') diff --git a/fvc/n3.lyx b/fvc/n3.lyx index a2494f8..1e9215c 100644 --- a/fvc/n3.lyx +++ b/fvc/n3.lyx @@ -87,7 +87,7 @@ Sean \end_inset y -\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ +\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$ \end_inset , @@ -139,7 +139,7 @@ f(z)=\sum_{n=0}^{\infty}c_{n}(z-a)^{n} \end_inset para -\begin_inset Formula $c_{n}:=\frac{f^{(n)}(a)}{n!}$ +\begin_inset Formula $c_{n}\coloneqq \frac{f^{(n)}(a)}{n!}$ \end_inset , y queremos ver que todos los @@ -169,7 +169,7 @@ para \end_inset Sea -\begin_inset Formula $g_{k}(z):=\sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$ +\begin_inset Formula $g_{k}(z)\coloneqq \sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$ \end_inset una función holomorfa en @@ -210,7 +210,7 @@ status open \end_inset Sea -\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ +\begin_inset Formula $A\coloneqq \{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ \end_inset , pues @@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas \end_inset no es idénticamente nula, entonces todo punto de -\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ +\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$ \end_inset es aislado y -- cgit v1.2.3