From ad0ae2bd92011c4002253eb5d15caf82c1f4ad16 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Wed, 13 May 2020 19:44:01 +0200 Subject: Comentadas demostraciones que no entran de GyA --- ga/n1.lyx | 506 ++++++++++++++++++++++++++++++++++++++++++----------------- ga/n2.lyx | 532 +++++++++++++++++++++++++++++++++++++++++++------------------- ga/n3.lyx | 476 ++++++++++++++++++++++++++++++++++++------------------- 3 files changed, 1050 insertions(+), 464 deletions(-) (limited to 'ga') diff --git a/ga/n1.lyx b/ga/n1.lyx index 8457ada..94f9570 100644 --- a/ga/n1.lyx +++ b/ga/n1.lyx @@ -349,10 +349,10 @@ Ejemplos: \end_inset son grupos abelianos. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento \begin_inset Formula $a$ @@ -369,7 +369,11 @@ La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento solo el 0 tiene opuesto. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $\mathbb{N}$ \end_inset @@ -391,15 +395,19 @@ La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento \end_inset son monoides conmutativos con el producto. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout El producto es asociativo y conmutativo con neutro 1, pero el 0 nunca tiene opuesto. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Llamamos \begin_inset Formula $Y^{X}$ @@ -423,10 +431,10 @@ Llamamos \end_inset es un monoide, pero no es conmutativo si hay al menos dos elementos. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Claramente \begin_inset Formula $\circ$ \end_inset @@ -471,7 +479,11 @@ Claramente . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Llamamos \series bold @@ -499,14 +511,18 @@ grupo simétrico \end_inset es un grupo. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Es asociativa, tiene como neutro la identidad y todo elemento es invertible. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Sea \begin_inset Formula $X$ @@ -530,10 +546,10 @@ Sea es un monoide conmutativo cuyos elementos invertibles son las funciones que no se anulan. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Ambas operaciones son conmutativas y asociativas, la suma tiene como neutro la función constante 0 y el producto la función constante 1. El inverso de una función @@ -563,7 +579,11 @@ Ambas operaciones son conmutativas y asociativas, la suma tiene como neutro no se anula. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Dada una operación \begin_inset Formula $*$ @@ -605,17 +625,21 @@ Si \end_inset tiene a lo sumo un neutro. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $f=e*f=e$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Dado un monoide \begin_inset Formula $(X,*)$ @@ -655,17 +679,21 @@ Si \end_inset tiene a lo sumo un simétrico. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $y=e*y=(x*a)*y=x*(a*y)=x*e=x$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $a$ @@ -673,10 +701,10 @@ Si tiene simétrico por un lado, es cancelable por dicho lado. En particular, todo elemento invertible es cancelable. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Si, por ejemplo, \begin_inset Formula $a$ \end_inset @@ -696,7 +724,11 @@ Si, por ejemplo, . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Section Anillos \end_layout @@ -979,10 +1011,10 @@ Todo elemento invertible es regular. . En particular, el 0 y el 1 son únicos. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $b+a=a\implies b=b+(a-a)=(b+a)-a=a-a=0$ \end_inset @@ -993,7 +1025,11 @@ Todo elemento invertible es regular. . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate El opuesto de \begin_inset Formula $a$ @@ -1011,10 +1047,10 @@ El opuesto de \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $0a+0a=(0+0)a=0a=0a+0\implies0a=0$ \end_inset @@ -1025,16 +1061,20 @@ El opuesto de se prueba análogamente. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $a(-b)=(-a)b=-(ab)$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $a(-b)+ab=a(-b+b)=a0=0$ \end_inset @@ -1058,23 +1098,31 @@ El opuesto de se prueba análogamente. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $a(b-c)=ab-ac$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $a(b-c)=a(b+(-c))=ab+a(-c)=ab+(-ac)=ab-ac$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $a$ \end_inset @@ -1096,9 +1144,9 @@ El opuesto de \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1119,6 +1167,7 @@ Basta ver que . \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1169,6 +1218,11 @@ Tenemos \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $0=1$ @@ -1179,17 +1233,21 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $a\in A\implies a=a1=a0=0$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Dado un anillo \begin_inset Formula $A$ @@ -1278,10 +1336,10 @@ Propiedades: Dados un anillo \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $n=0$ \end_inset @@ -1315,16 +1373,20 @@ Para . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $(n+m)a=na+ma$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $m=0$ \end_inset @@ -1358,16 +1420,20 @@ Para . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $n(ma)=(nm)a$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $n=0$ \end_inset @@ -1392,7 +1458,11 @@ Para . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $n,m\geq0$ @@ -1415,10 +1485,10 @@ Si \end_inset enteros arbitrarios. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $m=0$ \end_inset @@ -1453,7 +1523,7 @@ Para \end_layout -\begin_layout Standard +\begin_layout Plain Layout Primero vemos que, para \begin_inset Formula $m>0$ \end_inset @@ -1502,7 +1572,7 @@ Primero vemos que, para . \end_layout -\begin_layout Standard +\begin_layout Plain Layout Con esto, sea \begin_inset Formula $m>0$ \end_inset @@ -1518,7 +1588,11 @@ Con esto, sea . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $A$ @@ -1545,10 +1619,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $n=0$ \end_inset @@ -1586,7 +1660,11 @@ Para . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Section Subanillos \end_layout @@ -1769,7 +1847,8 @@ Para que \end_inset . -\end_layout +\begin_inset Note Comment +status open \begin_layout Description \begin_inset Formula $[1\implies2]$ @@ -1862,6 +1941,11 @@ Para que , luego es cerrado para sumas. \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Algunos subanillos: \end_layout @@ -1915,9 +1999,9 @@ Cada uno de \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1950,6 +2034,7 @@ Si . \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1967,6 +2052,11 @@ Obvio. \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Llamamos \series bold @@ -1985,10 +2075,10 @@ subanillo primo \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Claramente \begin_inset Formula $\mathbb{Z}1$ \end_inset @@ -2039,7 +2129,11 @@ Claramente . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $A$ @@ -2062,14 +2156,18 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout No contiene al 1. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Dado \begin_inset Formula $z\in\mathbb{C}$ @@ -2277,49 +2375,61 @@ Propiedades: Sean \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $0+f(0)=f(0)=f(0+0)=f(0)+f(0)\implies0=f(0)$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $f(-a)=-f(a)$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $f(a)+f(-a)=f(a+(-a))=f(0)=0$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $f(a-b)=f(a)-f(b)$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $f(a-b)=f(a)+f(-b)=f(a)-f(b)$ \end_inset . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $f(a_{1}+\dots+a_{n})=f(a_{1})+\dots+f(a_{n})$ \end_inset @@ -2332,10 +2442,10 @@ Propiedades: Sean \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $n=0$ \end_inset @@ -2347,7 +2457,11 @@ Para . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $a$ @@ -2362,10 +2476,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $f(a)f(a^{-1})=f(aa^{-1})=f(1)=1$ \end_inset @@ -2376,7 +2490,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $f(a_{1}\cdots a_{n})=f(a_{1})\cdots f(a_{n})$ \end_inset @@ -2402,10 +2520,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $1=f(1)\in f(A')$ \end_inset @@ -2437,7 +2555,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $B'$ @@ -2456,10 +2578,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $1\in f^{-1}(1)\in f^{-1}(B')$ \end_inset @@ -2491,7 +2613,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $f$ @@ -2502,10 +2628,10 @@ Si \end_inset también. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $f^{-1}(1)=1$ \end_inset @@ -2545,7 +2671,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Ejemplos: \end_layout @@ -2572,9 +2702,9 @@ Dados anillos \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -2595,6 +2725,7 @@ status open . \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -2624,6 +2755,11 @@ status open \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Sea \begin_inset Formula $B$ @@ -2662,10 +2798,10 @@ Dado un anillo \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $\mu(1)=1$ \end_inset @@ -2701,7 +2837,11 @@ Dado un anillo . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Dada una familia de anillos \begin_inset Formula $(A_{i})_{i\in I}$ @@ -2810,7 +2950,12 @@ ideal \end_inset . - Todo ideal contiene al 0, pues tomando + Todo ideal contiene al 0 +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues tomando \begin_inset Formula $a\in I$ \end_inset @@ -2818,6 +2963,11 @@ ideal \begin_inset Formula $0=a+(-1)a\in I$ \end_inset + +\end_layout + +\end_inset + . \end_layout @@ -2905,10 +3055,10 @@ ideal principal \end_inset son de esta forma. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sea \begin_inset Formula $I$ \end_inset @@ -2984,7 +3134,11 @@ Sea . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Sean \begin_inset Formula $I$ @@ -3092,7 +3246,11 @@ anillo cociente de \series default . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -3173,6 +3331,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Es claro que \begin_inset Formula $A/0\cong A$ @@ -3192,7 +3355,11 @@ Es claro que \end_inset . - En efecto, dado +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, dado \begin_inset Formula $a\in\mathbb{Z}$ \end_inset @@ -3217,12 +3384,17 @@ Es claro que \end_inset , -\begin_inset Formula $a\equiv b\iff a-b\in n\mathbb{Z}\iff n|a-b\overset{|a-b|n+m$ \end_inset @@ -418,7 +424,7 @@ Para \end_layout -\begin_layout Standard +\begin_layout Plain Layout El coeficiente de grado \begin_inset Formula $n+m$ \end_inset @@ -434,7 +440,11 @@ El coeficiente de grado , luego la igualdad se da si y sólo si esto es no nulo. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard \begin_inset Formula $A[X]$ \end_inset @@ -461,7 +471,8 @@ cuerpo de las funciones racionales \end_inset . -\end_layout +\begin_inset Note Comment +status open \begin_layout Enumerate \begin_inset Argument item:1 @@ -523,6 +534,11 @@ Sean tampoco lo es. \end_layout +\end_inset + + +\end_layout + \begin_layout Section Propiedad universal \end_layout @@ -581,10 +597,10 @@ PUAP \end_inset -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Si \begin_inset Formula $\tilde{f}$ \end_inset @@ -620,7 +636,11 @@ lo que prueba la unicidad. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $A[X]$ \end_inset @@ -671,10 +691,10 @@ lo que prueba la unicidad. \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Tomando \begin_inset Formula $v$ \end_inset @@ -740,7 +760,11 @@ Tomando es el isomorfismo buscado. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Así: \end_layout @@ -808,17 +832,21 @@ función polinómica \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $S_{b}$ \end_inset se obtiene al aplicar la PUAP a la inclusión. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Dado \begin_inset Formula $a\in A$ @@ -837,10 +865,10 @@ Dado \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $S_{X-a}(S_{X+a}(X))=S_{X-a}(X+a)=X$ \end_inset @@ -872,7 +900,11 @@ Dado . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $A$ @@ -883,10 +915,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout El homomorfismo \begin_inset Formula $A[X]\to A$ \end_inset @@ -898,7 +930,11 @@ El homomorfismo , y basta aplicar el primer teorema de isomorfía. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Todo homomorfismo de anillos \begin_inset Formula $f:A\to B$ @@ -921,10 +957,10 @@ que es inyectivo o suprayectivo si lo es \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Se obtiene de aplicar la PUAP a la composición de la inclusión \begin_inset Formula $B\to B[X]$ \end_inset @@ -936,7 +972,11 @@ Se obtiene de aplicar la PUAP a la composición de la inclusión . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $A$ @@ -955,14 +995,18 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Basta aplicar lo anterior al homomorfismo inyectivo inclusión. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $I$ @@ -1001,10 +1045,10 @@ Su núcleo es \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Se obtiene de aplicar la PUAP a la proyección \begin_inset Formula $A\to A/I$ \end_inset @@ -1017,7 +1061,11 @@ Se obtiene de aplicar la PUAP a la proyección es un ideal, y entonces basta aplicar el primer teorema de isomorfía. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Section Raíces de polinomios \end_layout @@ -1078,7 +1126,11 @@ noprefix "false" \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -1205,6 +1257,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard \begin_inset Float algorithm wide false @@ -1368,7 +1425,11 @@ Teorema del resto: \end_inset . - En efecto, si +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, si \begin_inset Formula $f=q(X-a)+r$ \end_inset @@ -1389,6 +1450,10 @@ Teorema del resto: \end_inset . +\end_layout + +\end_inset + De aquí se obtiene el \series bold teorema de Ruffini @@ -1528,7 +1593,11 @@ La multiplicidad de \end_inset no es raíz. - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -1601,6 +1670,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Si \begin_inset Formula $D$ @@ -1651,7 +1725,11 @@ Si \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -1723,6 +1801,11 @@ Demostración: , de donde se obtiene el resultado. +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -1767,10 +1850,10 @@ Para \end_inset son iguales. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $a_{1},\dots,a_{m}$ \end_inset @@ -1790,7 +1873,11 @@ Sean . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $D$ \end_inset @@ -1804,9 +1891,9 @@ Sean \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1832,6 +1919,7 @@ Si hubiera . \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1854,6 +1942,11 @@ Si \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Como ejemplo de lo anterior, por el teorema pequeño de Fermat, dado un primo @@ -1913,10 +2006,10 @@ derivada \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula \begin{multline*} D(aP+bQ)=D\left(a\sum_{k}p_{k}X^{k}+b\sum_{k}q_{k}X^{k}\right)=D\left(\sum_{k}(ap_{k}+bq_{k})X^{k}\right)=\\ @@ -1928,16 +2021,20 @@ D(aP+bQ)=D\left(a\sum_{k}p_{k}X^{k}+b\sum_{k}q_{k}X^{k}\right)=D\left(\sum_{k}(a \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $(PQ)'=P'Q+PQ'$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula \begin{multline*} D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\right)=D\left(\sum_{k}\left(\sum_{i=0}^{k}p_{i}q_{k-i}\right)X^{k}\right)=\\ @@ -1951,16 +2048,20 @@ D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\righ \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $(P^{n})'=nP^{n-1}P'$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $P^{n-1}$ \end_inset @@ -1993,7 +2094,11 @@ D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\righ . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Dados un dominio \begin_inset Formula $D$ @@ -2024,7 +2129,11 @@ Dados un dominio \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -2137,6 +2246,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Section Divisibilidad en anillos de polinomios \end_layout @@ -2155,7 +2269,8 @@ Dado un anillo \end_inset es un cuerpo. -\end_layout +\begin_inset Note Comment +status open \begin_layout Description \begin_inset Formula $1\implies2]$ @@ -2270,6 +2385,11 @@ Dado un anillo son invertibles. \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Sean \begin_inset Formula $D$ @@ -3149,22 +3269,6 @@ status open es un DFU. \end_layout -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{samepage} -\end_layout - -\end_inset - - -\end_layout - \begin_layout Standard Si \begin_inset Formula $D$ @@ -3208,7 +3312,12 @@ Si \end_inset . - Esto está bien definido, pues si + Esto está bien definido +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si \begin_inset Formula $b_{1}\sim b_{2}$ \end_inset @@ -3220,28 +3329,17 @@ Si \begin_inset Formula $(ab_{2})D^{*}=(aub_{1})D^{*}=\{ab_{1}uv\}_{v\in D^{*}}=\{ab_{1}v\}_{v\in D^{*}}=(ab_{1})D^{*}$ \end_inset -. - Además, -\begin_inset Formula $a(b(cD^{*}))=(ab)(cD^{*})$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open -\begin_layout Plain Layout - - -\backslash -end{samepage} \end_layout \end_inset +. + Además, +\begin_inset Formula $a(b(cD^{*}))=(ab)(cD^{*})$ +\end_inset +. \end_layout \begin_layout Standard @@ -3274,7 +3372,12 @@ Definimos \end_inset . - Esto está bien definido, pues si + Esto está bien definido +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si \begin_inset Formula $a_{1}p,a_{2}p\in D[X]$ \end_inset @@ -3286,6 +3389,11 @@ Definimos \begin_inset Formula $a_{1}^{-1}c(a_{1}p)=a_{2}^{-1}c(a_{2}p)$ \end_inset + +\end_layout + +\end_inset + . Si \begin_inset Formula $c(p)=aD^{*}$ @@ -3344,10 +3452,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $a\mid p$ \end_inset @@ -3370,16 +3478,20 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $c(ap)=ac(p)$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Si \begin_inset Formula $a\in D$ \end_inset @@ -3404,15 +3516,19 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $p\in D[X]\iff c(p)\in D$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3429,6 +3545,7 @@ status open Obvio. \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3572,6 +3689,11 @@ Sea \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Un polinomio \begin_inset Formula $p$ @@ -3810,10 +3932,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $g,h\in K[X]$ \end_inset @@ -3833,7 +3955,11 @@ Sean es unidad. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $\text{gr}(f)>1$ @@ -3856,10 +3982,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $a$ \end_inset @@ -3887,7 +4013,11 @@ Sean son unidades. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $\text{gr}(f)\in\{2,3\}$ @@ -3906,9 +4036,9 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3925,6 +4055,7 @@ status open Es el contrarrecíproco de lo anterior. \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3983,6 +4114,11 @@ De haber \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Si \begin_inset Formula $D$ @@ -4021,7 +4157,11 @@ Si \end_inset . - En efecto, sea +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, sea \begin_inset Formula $t=\frac{r}{s}$ \end_inset @@ -4072,6 +4212,11 @@ Si . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard \series bold @@ -4126,7 +4271,11 @@ Criterio de reducción: \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -4200,6 +4349,11 @@ Demostración: . +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -4276,7 +4430,11 @@ Criterio de Eisenstein: \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -4353,6 +4511,11 @@ Demostración: es análogo. \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Así: \end_layout @@ -4375,10 +4538,10 @@ Si \end_inset es irreducible. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $X^{n}-a$ \end_inset @@ -4393,7 +4556,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Para \begin_inset Formula $n\geq3$ @@ -4474,10 +4641,10 @@ de 1 \end_inset es irreducible. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Usando el automorfismo de sustitución en \begin_inset Formula $X+1$ \end_inset @@ -4521,7 +4688,11 @@ Entonces y podemos aplicar el criterio de Eisenstein. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Section Polinomios en varias indeterminadas \end_layout @@ -4581,7 +4752,17 @@ polinomios en \begin_inset Formula $n\in\mathbb{N}^{*}$ \end_inset -, por inducción: + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, por inducción +\end_layout + +\end_inset + +: \end_layout \begin_layout Enumerate @@ -4691,7 +4872,11 @@ con \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -4772,17 +4957,6 @@ p=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}=\sum_{i\in\mat . \end_layout -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{samepage} -\end_layout - \end_inset @@ -4896,22 +5070,6 @@ Dados un anillo conmutativo . \end_layout -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -end{samepage} -\end_layout - -\end_inset - - -\end_layout - \begin_layout Standard Así: \end_layout -- cgit v1.2.3