From c34b47089a133e58032fe4ea52f61efacaf5f548 Mon Sep 17 00:00:00 2001 From: Juan Marin Noguera Date: Sun, 4 Dec 2022 22:49:17 +0100 Subject: Oops --- ggs/n3.lyx | 80 +++++++++++++++++++++++++++++++------------------------------- 1 file changed, 40 insertions(+), 40 deletions(-) (limited to 'ggs/n3.lyx') diff --git a/ggs/n3.lyx b/ggs/n3.lyx index f553749..28601db 100644 --- a/ggs/n3.lyx +++ b/ggs/n3.lyx @@ -110,7 +110,7 @@ aplicación exponencial \end_inset donde -\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$ +\begin_inset Formula ${\cal D}_{p}\coloneqq \{v\in T_{p}S\mid 1\in I_{v}\}$ \end_inset . @@ -278,7 +278,7 @@ Como \end_inset , sea -\begin_inset Formula $\alpha(t):=tw$ +\begin_inset Formula $\alpha(t)\coloneqq tw$ \end_inset , existe @@ -377,11 +377,11 @@ entorno normal \end_inset , sean -\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)\in{\cal U}$ +\begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)\in{\cal U}$ \end_inset y el segmento de geodésica -\begin_inset Formula $\gamma_{p}:=\gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$ +\begin_inset Formula $\gamma_{p}\coloneqq \gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$ \end_inset , entonces @@ -487,7 +487,7 @@ Demostración: \end_inset dada por -\begin_inset Formula $\alpha(t):=v+tw=(1+\lambda t)v$ +\begin_inset Formula $\alpha(t)\coloneqq v+tw=(1+\lambda t)v$ \end_inset , entonces @@ -512,7 +512,7 @@ Para el caso general, sea \end_inset dada por -\begin_inset Formula $\tau(s,t):=s\alpha(t):=s(v+tw)$ +\begin_inset Formula $\tau(s,t)\coloneqq s\alpha(t)\coloneqq s(v+tw)$ \end_inset , para todo @@ -591,7 +591,7 @@ Como . Proyectando el subrecubrimiento -\begin_inset Formula $A:=\bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$ +\begin_inset Formula $A\coloneqq \bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$ \end_inset en @@ -608,7 +608,7 @@ Como . Sea -\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$ +\begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$ \end_inset , para @@ -632,7 +632,7 @@ luego \begin_layout Standard Sea ahora -\begin_inset Formula $\varphi:=\exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$ +\begin_inset Formula $\varphi\coloneqq \exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$ \end_inset . @@ -733,7 +733,7 @@ pues \end_inset dada por -\begin_inset Formula $\beta_{s}(t):=\exp_{p}(s\alpha(t))$ +\begin_inset Formula $\beta_{s}(t)\coloneqq \exp_{p}(s\alpha(t))$ \end_inset , @@ -909,7 +909,7 @@ Sean \end_inset tal que -\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert