From e1a608c876dcf250137dfa8e334265dd5d8a8a36 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Thu, 11 Feb 2021 07:10:58 +0100 Subject: Tema 4 mned --- mne/n.lyx | 37 +++ mne/n4.lyx | 1074 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1111 insertions(+) create mode 100644 mne/n4.lyx (limited to 'mne') diff --git a/mne/n.lyx b/mne/n.lyx index bf10461..fe7837d 100644 --- a/mne/n.lyx +++ b/mne/n.lyx @@ -206,6 +206,43 @@ filename "n3.lyx" \end_inset +\end_layout + +\begin_layout Chapter +Métodos multipaso +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +\begin_inset Note Note +status open + +\begin_layout Chapter +Dominios de estabilidad +\end_layout + +\begin_layout Plain Layout +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + +\end_inset + + \end_layout \end_body diff --git a/mne/n4.lyx b/mne/n4.lyx new file mode 100644 index 0000000..17e2805 --- /dev/null +++ b/mne/n4.lyx @@ -0,0 +1,1074 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +método en +\begin_inset Formula $m$ +\end_inset + + pasos +\series default + es uno para el que existen +\begin_inset Formula $a_{0},\dots,a_{m-1},b_{0},\dots,b_{m}\in\mathbb{R}$ +\end_inset + + tales que, si +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$ +\end_inset + + es una solución aproximada de un problema por el método, para +\begin_inset Formula $i\geq m$ +\end_inset + +, +\begin_inset Formula +\[ +\omega_{i}=a_{0}\omega_{i-m}+\dots+a_{m-1}\omega_{i-1}+(t_{i}-t_{i-1})(b_{0}f(t_{i-m},\omega_{i-m})+\dots+b_{m}f(t_{i},\omega_{i})). +\] + +\end_inset + +El método es +\series bold +explícito +\series default + si +\begin_inset Formula $b_{m}=0$ +\end_inset + + e +\series bold +implícito +\series default + si no. + Estos métodos requieren usar otros métodos para calcular +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{m-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El método es de paso fijo si +\begin_inset Formula $t_{i}-t_{i-1}=h$ +\end_inset + + para un cierto parámetro +\begin_inset Formula $h$ +\end_inset + + e +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +. + Para el problema +\begin_inset Formula +\[ +\left\{ \begin{aligned}\dot{x}(t) & =f(t,x(t)),\\ +x(t_{0}) & =\omega_{0}, +\end{aligned} +\right. +\] + +\end_inset + +algunos métodos multipaso de paso fijo son: +\end_layout + +\begin_layout Enumerate + +\series bold +Método explícito de Adams-Bashford de 4 pasos: +\series default + +\begin_inset Formula +\[ +\omega_{i}=\omega_{i-1}+\frac{h}{24}\left(55f(t_{i-1},\omega_{i-1})-59f(t_{i-2},\omega_{i-2})+37f(t_{i-3},\omega_{i-3})-9f(t_{i-4},\omega_{i-4})\right). +\] + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es lo suficientemente regular, +\begin_inset Formula $\tau_{i}(h)=\frac{251}{720}x^{(5)}(\xi)h^{4}$ +\end_inset + + para cierto +\begin_inset Formula $\xi\in[t_{i-1},t_{i}]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Método implícito de Adams-Moulton de 3 pasos: +\series default + +\begin_inset Formula +\[ +\omega_{i}=\omega_{i-1}+\frac{h}{24}\left(9f(t_{i},\omega_{i})+19f(t_{i-1},\omega_{i-1})-5f(t_{i-2},\omega_{i-2})+f(t_{i-3},\omega_{i-3})\right). +\] + +\end_inset + +Para +\begin_inset Formula $f$ +\end_inset + + suficientemente regular, +\begin_inset Formula $\tau_{i}(h)=-\frac{19}{720}x^{(5)}(\xi)h^{4}$ +\end_inset + + para cierto +\begin_inset Formula $\xi\in[t_{i-1},t_{i}]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Se tiene +\begin_inset Formula +\[ +x(t_{i+1})=x(t_{i})+\int_{t_{i}}^{t_{i+1}}f(t,x(t))dt, +\] + +\end_inset + +pues +\begin_inset Formula +\[ +x(t_{i+1})-x(t_{i})=\int_{t_{i}}^{t_{i+1}}\dot{x}=\int_{t_{i}}^{t_{i+1}}f(t,x(t))dt. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Teoría general de convergencia +\end_layout + +\begin_layout Standard +Dados un problema +\begin_inset Formula +\[ +\left\{ \begin{aligned}\dot{x}(t) & =f(t,x(t)),\\ +x(t_{0}) & =a +\end{aligned} +\right. +\] + +\end_inset + +y una solución aproximada +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$ +\end_inset + + por un método multipaso de coeficientes +\begin_inset Formula $a_{0},\dots,a_{m-1},b_{0},\dots,b_{m}$ +\end_inset + + con paso fijo +\begin_inset Formula $h>0$ +\end_inset + +, el +\series bold +error local de truncamiento +\series default + es +\begin_inset Formula +\[ +\tau_{i}(h)=\frac{x(t_{i})-a_{m-1}x(t_{i-1})-\dots-a_{0}x(t_{i-m})}{h}-\left(b_{m}f(t_{i},x(t_{i}))+\dots+b_{0}f(t_{i-m},x(t_{i-m}))\right), +\] + +\end_inset + +para +\begin_inset Formula $i\in\{m,\dots,n\}$ +\end_inset + +, de forma que +\begin_inset Formula +\[ +x(t_{i})=\sum_{j=1}^{m}a_{m-j}x(t_{i-j})+h\sum_{j=0}^{m}b_{m-j}\dot{x}(t_{i-j})+h\tau_{i}(h). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Consideremos un método multipaso de paso fijo que, para un problema en un + intervalo +\begin_inset Formula $[a,b]$ +\end_inset + + da soluciones +\begin_inset Formula $(t_{hi},\omega_{hi})_{i=0}^{n_{h}}$ +\end_inset + + que cubren +\begin_inset Formula $[a,b]$ +\end_inset + + con paso +\begin_inset Formula $h$ +\end_inset + + en cierto intervalo +\begin_inset Formula $[0,h_{\max}]$ +\end_inset + + y con +\begin_inset Formula $\omega_{hi}=x(t_{hi})$ +\end_inset + + para +\begin_inset Formula $i0$ +\end_inset + + tal que, para todo +\begin_inset Formula $h$ +\end_inset + + y para ciertos +\begin_inset Formula $\varepsilon_{m},\dots,\varepsilon_{n_{h}}\in\mathbb{R}$ +\end_inset + +, sea +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}:=(t_{hi},\omega_{hi})_{i=0}^{n_{h}}$ +\end_inset + +, si se puede generar una solución +\begin_inset Formula $(t_{i},\tilde{\omega}_{i})_{i=0}^{n}$ +\end_inset + + con +\begin_inset Formula $\tilde{\omega}_{i}:=\omega_{i}$ +\end_inset + + para +\begin_inset Formula $i0$ +\end_inset + +, existen +\begin_inset Formula $M,K\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula +\[ +\max_{i\in\{0,\dots,n\}}\Vert x(t_{i})-\omega_{i}\Vert\leq M\left(\max_{i\in\{0,\dots,m-1\}}\Vert x(t_{i})-\omega_{i}\Vert+Kh^{p}\right). +\] + +\end_inset + + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a_{0},\dots,a_{m-1},b_{0},\dots,b_{m}$ +\end_inset + + los coeficientes del método y +\begin_inset Formula $\varepsilon_{i}:=h\tau_{i}(h)$ +\end_inset + +, como +\begin_inset Formula $(t_{i},x(t_{i}))_{i=0}^{n}$ +\end_inset + + se obtiene de añadir al método un error de +\begin_inset Formula $\varepsilon_{i}$ +\end_inset + + en cada paso +\begin_inset Formula $i$ +\end_inset + +, por la estabilidad, +\begin_inset Formula +\[ +\max_{i\in\{m,\dots,n\}}\Vert x(t_{i})-\omega_{i}\Vert\leq M\left(\max_{i\in\{0,\dots,m-1\}}\Vert x(t_{i})-\omega_{i}\Vert+\sum_{i=m}^{n}\Vert\varepsilon_{i}\Vert\right)=M\sum_{i=m}^{n}\Vert\varepsilon_{i}\Vert +\] + +\end_inset + +para cierto +\begin_inset Formula $M$ +\end_inset + + que no depende de +\begin_inset Formula $h$ +\end_inset + +, y si el intervalo es +\begin_inset Formula $[a,b]$ +\end_inset + +, +\begin_inset Formula $\sum_{i=m}^{n}\Vert\varepsilon_{i}\Vert=\sum_{i=m}^{n}|h|\Vert\tau_{i}(h)\Vert\leq(n-m+1)|h|\max_{i\in\{m,\dots,n\}}\Vert\tau_{i}(h)\Vert\leq(b-a)\Vert\tau_{i}(h)\Vert$ +\end_inset + +, que tiende a 0 cuando +\begin_inset Formula $h\to0$ +\end_inset + + por la consistencia, y como +\begin_inset Formula $\max_{i\in\{0,\dots,m-1\}}\Vert x(t_{i})-\omega_{i}\Vert=0$ +\end_inset + +, el método es convergente. + Además, si +\begin_inset Formula $\tau_{i}(h)=O(h^{p})$ +\end_inset + +, sea +\begin_inset Formula $k$ +\end_inset + + con +\begin_inset Formula $\tau(h)\leq Kh^{p}$ +\end_inset + + para +\begin_inset Formula $h\in[0,h_{\max}]$ +\end_inset + +, cada +\begin_inset Formula $\Vert\varepsilon_{i}\Vert=h\Vert\tau_{i}(h)\Vert\leq kh^{p+1}$ +\end_inset + +, luego +\begin_inset Formula $\sum_{i=m}^{n}\Vert\varepsilon_{i}\Vert\leq\sum_{i=m}^{n}kh^{p+1}\leq\frac{b-a}{h}kh^{p+1}=(b-a)kh^{p}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Convergencia en un paso +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, dados +\begin_inset Formula $h_{0}>0$ +\end_inset + + y un método de un paso fijo +\begin_inset Formula $h\in[0,h_{0}]$ +\end_inset + + dado por +\begin_inset Formula $\omega_{0}:=x(t_{0})$ +\end_inset + + y +\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$ +\end_inset + + con +\begin_inset Formula $Ø$ +\end_inset + + continua y lipschitziana en la segunda variable: +\end_layout + +\begin_layout Enumerate +El método es estable. +\end_layout + +\begin_deeper +\begin_layout Standard +Fijado +\begin_inset Formula $h$ +\end_inset + +, sean +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$ +\end_inset + + y +\begin_inset Formula $(t_{i},\tilde{\omega}_{i})_{i=0}^{n}$ +\end_inset + + dados por +\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$ +\end_inset + + y +\begin_inset Formula $\tilde{\omega}_{i+1}:=\tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$ +\end_inset + + para ciertos +\begin_inset Formula $\varepsilon_{1},\dots,\varepsilon_{n}$ +\end_inset + +, queremos ver que para +\begin_inset Formula $i\in\{0,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $\Vert\tilde{\omega}_{i}-\omega_{i}\Vert\leq(1+hL)^{i}(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i}\Vert\varepsilon_{j}\Vert)$ +\end_inset + +. + Para +\begin_inset Formula $i=0$ +\end_inset + + esto es claro, y supuesto esto probado para un cierto +\begin_inset Formula $i$ +\end_inset + +, para +\begin_inset Formula $i+1$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\Vert\tilde{\omega}_{i+1}-\omega_{i+1}\Vert=\Vert\tilde{\omega}_{i}-\omega_{i}+hØ(t_{i},\omega_{i},h)-hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i}\Vert\leq(1+hL)\Vert\tilde{\omega}_{i}-\omega_{i}\Vert+\Vert\varepsilon_{i}\Vert\leq\\ +\leq(1+hL)^{i+1}\left(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i}\Vert\varepsilon_{j}\Vert\right)+\Vert\varepsilon_{i}\Vert\overset{(1+hL)^{i+1}\geq1}{\leq}(1+hL)^{i+1}\left(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i+1}\Vert\varepsilon_{j}\Vert\right). +\end{multline*} + +\end_inset + +Con esto, como +\begin_inset Formula $(1+hL)^{i}\leq(1+hL)^{n}$ +\end_inset + +, llamando +\begin_inset Formula $M:=(1+hL)^{n}$ +\end_inset + +, +\begin_inset Formula $\Vert\tilde{\omega}_{i}-\omega_{i}\Vert\leq M(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i}\Vert\varepsilon_{j}\Vert)$ +\end_inset + + y el método es estable. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $Ø(t,x,0)\equiv f(t,x)$ +\end_inset + +, el método es consistente y por tanto convergente. +\end_layout + +\begin_deeper +\begin_layout Standard +Existe +\begin_inset Formula $\xi_{i}\in(t_{i-1},t_{i})$ +\end_inset + + con +\begin_inset Formula +\begin{align*} +\tau_{i}(h) & =\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i},x(t_{i}),h)=\dot{x}(\xi_{i})-Ø(t_{i},x(t_{i}),h)=\\ + & =f(\xi_{i},x(\xi_{i}))-Ø(\xi_{i},x(\xi_{i}),0)+Ø(\xi_{i},x(\xi_{i}),0)-Ø(t_{i},x(t_{i}),h)=\\ + & =Ø(\xi_{i},x(\xi_{i}),0)-Ø(t_{i},x(t_{i}),h). +\end{align*} + +\end_inset + +Si el intervalo es +\begin_inset Formula $[a,b]$ +\end_inset + +, por la continuidad de +\begin_inset Formula $((t,h)\mapstoØ(t,x(t),h)):[a,b]\times[0,h_{0}]\to\mathbb{R}^{n}$ +\end_inset + +, para cada +\begin_inset Formula $(t,h)\in[a,b]\times[0,h_{0}]$ +\end_inset + + y cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|t'-t|,|h'-h|<\delta$ +\end_inset + + entonces +\begin_inset Formula $\VertØ(t',x(t'),h')-Ø(t,x(t),h)\Vert<\varepsilon$ +\end_inset + +. + En particular, si +\begin_inset Formula $|h|<\delta$ +\end_inset + +, como +\begin_inset Formula $|\xi_{i}-t_{i}|<|h|<\delta$ +\end_inset + +, +\begin_inset Formula $|Ø(\xi_{i},x(\xi_{i}),0)-Ø(t_{i},x(t_{i}),h)|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\tau(h)\to0$ +\end_inset + + cuando +\begin_inset Formula $h\to0$ +\end_inset + + y el método es consistente, y es convergente por ser además estable. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dado +\begin_inset Formula $K>0$ +\end_inset + +, si +\begin_inset Formula $|\tau_{i}(h)|\leq K$ +\end_inset + + para cada +\begin_inset Formula $h\in[0,h_{0}]$ +\end_inset + + e +\begin_inset Formula $i$ +\end_inset + +, entonces +\begin_inset Formula $|x(t_{i})-\omega_{i}|\leq\frac{K}{L}e^{L(t_{i}-t_{0})}$ +\end_inset + +, donde +\begin_inset Formula $L$ +\end_inset + + es una constante de Lipschitz de +\begin_inset Formula $Ø$ +\end_inset + + en la segunda variable. +\end_layout + +\begin_layout Section +Convergencia en métodos multipaso +\end_layout + +\begin_layout Standard +Una +\series bold +ecuación de recurrencia +\series default + es una de la forma +\begin_inset Formula +\[ +x_{i+m}=a_{0}x_{i}+a_{1}x_{i+1}+\dots+a_{m-1}x_{i+m-1}, +\] + +\end_inset + +donde los +\begin_inset Formula $a_{i}\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $a_{0}\neq0$ +\end_inset + + y la incógnita es la sucesión +\begin_inset Formula $(x_{n})_{n\in\mathbb{N}}$ +\end_inset + +. + Las soluciones de la ecuación forman un espacio vectorial de dimensión + +\begin_inset Formula $m$ +\end_inset + +, pues vienen dadas por los +\begin_inset Formula $m$ +\end_inset + + primeros términos. + El +\series bold +polinomio característico +\series default + de la ecuación es +\begin_inset Formula $P(\lambda):=\lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$ +\end_inset + +. + Si sus soluciones son todas reales, +\begin_inset Formula $\lambda_{0},\dots,\lambda_{m-1}\in\mathbb{R}$ +\end_inset + + donde cada una aparece tantas veces como su multiplicidad, las soluciones + de la ecuación de recurrencia son los +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + dados por +\begin_inset Formula $\sum_{i=0}^{m-1}c_{i}\lambda_{i}$ +\end_inset + +, con +\begin_inset Formula $c_{0},\dots,c_{m-1}\in\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados un método multipaso de paso fijo con +\begin_inset Formula $\omega_{i}:=a_{0}\omega_{i-m}+\dots+a_{m-1}\omega_{i-1}+hF(t_{i},h,\omega_{i-m},\dots,\omega_{i})$ +\end_inset + + y +\begin_inset Formula $\omega_{i}:=\alpha_{i}$ +\end_inset + + para +\begin_inset Formula $i