From c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Thu, 20 Feb 2020 16:07:37 +0100 Subject: 2 --- tem/n5.lyx | 1516 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1516 insertions(+) create mode 100644 tem/n5.lyx (limited to 'tem/n5.lyx') diff --git a/tem/n5.lyx b/tem/n5.lyx new file mode 100644 index 0000000..93b40a3 --- /dev/null +++ b/tem/n5.lyx @@ -0,0 +1,1516 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +separación por abiertos +\series default + o +\series bold +partición por abiertos +\series default + de un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es un par +\begin_inset Formula $\{A,B\}$ +\end_inset + + de subconjuntos abiertos no vacíos con +\begin_inset Formula $A\dot{\cup}B=X$ +\end_inset + +. + +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +conexo +\series default + si no admite ninguna separación por abiertos, y de lo contrario es +\series bold +disconexo +\series default +\SpecialChar endofsentence + Equivalentemente, +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es conexo si y sólo si no existe ningún par de cerrados +\begin_inset Formula $\{C,D\}$ +\end_inset + + no vacíos con +\begin_inset Formula $C\dot{\cup}D=X$ +\end_inset + +, si y sólo si los únicos subconjuntos de +\begin_inset Formula $X$ +\end_inset + + abiertos y cerrados al mismo tiempo son el total y el vacío. +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es conexo si y sólo si toda aplicación continua +\begin_inset Formula $f:(X,{\cal T})\rightarrow(\{0,1\},{\cal T}_{D})$ +\end_inset + + es constante. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + conexo y supongamos que existe +\begin_inset Formula $f:(X,{\cal T})\rightarrow(\{0,1\},{\cal T}_{D})$ +\end_inset + + continua no constante. + Entonces existen +\begin_inset Formula $p,q\in X$ +\end_inset + + con +\begin_inset Formula $f(p)=0$ +\end_inset + + y +\begin_inset Formula $f(q)=1$ +\end_inset + +. + Como +\begin_inset Formula $\{0\}$ +\end_inset + + y +\begin_inset Formula $\{1\}$ +\end_inset + + son abiertos, +\begin_inset Formula $A=f^{-1}(\{0\})$ +\end_inset + + y +\begin_inset Formula $B=f^{-1}(\{1\})$ +\end_inset + + forman una separación por abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + disconexo y +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + abiertos no vacíos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + con +\begin_inset Formula $A\dot{\cup}B=X$ +\end_inset + +. + Si definimos +\begin_inset Formula $f:(X,{\cal T})\rightarrow(\{0,1\},{\cal T}_{D})$ +\end_inset + + tal que +\begin_inset Formula $f(p)=0$ +\end_inset + + si +\begin_inset Formula $p\in A$ +\end_inset + + y +\begin_inset Formula $f(p)=1$ +\end_inset + + si +\begin_inset Formula $p\in B$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua porque la imagen inversa de todo abierto es abierto, pero no + es constante. +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es conexo si y sólo si toda aplicación continua cumple que +\begin_inset Formula $\forall x,y\in X,c\in(f(x),f(y));\exists z\in X:f(z)=c$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Supongamos que existe +\begin_inset Formula $f:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + tal que existen +\begin_inset Formula $x,y\in X$ +\end_inset + + y +\begin_inset Formula $c\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $f(x)0$ +\end_inset + + con +\begin_inset Formula $B(y;r)\subseteq U$ +\end_inset + + y si +\begin_inset Formula $z\in B(y;r)$ +\end_inset + +, la unión del arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + + y el radio que une +\begin_inset Formula $y$ +\end_inset + + con +\begin_inset Formula $z$ +\end_inset + + es un arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $z$ +\end_inset + +, luego +\begin_inset Formula $B(y;r)\subseteq A$ +\end_inset + + y, como +\begin_inset Formula $y$ +\end_inset + + es arbitrario, +\begin_inset Formula $A$ +\end_inset + + es abierto. + Ahora bien, sea +\begin_inset Formula $y\in U\backslash A$ +\end_inset + +, existe +\begin_inset Formula $r>0$ +\end_inset + + con +\begin_inset Formula $B(y;r)\subseteq U$ +\end_inset + +. + Pero si existiera +\begin_inset Formula $z\in B(y;r)$ +\end_inset + + con +\begin_inset Formula $z\in A$ +\end_inset + +, la unión del arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $z$ +\end_inset + + y el radio que une +\begin_inset Formula $z$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + + es un arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + + y por tanto +\begin_inset Formula $y\in A\#$ +\end_inset + +, luego +\begin_inset Formula $B(y;r)\subseteq U\backslash A$ +\end_inset + +, y como +\begin_inset Formula $y$ +\end_inset + + es arbitrario, +\begin_inset Formula $U\backslash A$ +\end_inset + + es abierto y +\begin_inset Formula $A$ +\end_inset + + es cerrado. + Como +\begin_inset Formula $A$ +\end_inset + + es abierto y cerrado en un espacio conexo y +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $p\in A$ +\end_inset + +, entonces +\begin_inset Formula $A=U$ +\end_inset + + y +\begin_inset Formula $U$ +\end_inset + + es conexo por arcos. +\end_layout + +\end_body +\end_document -- cgit v1.2.3