From c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Thu, 20 Feb 2020 16:07:37 +0100 Subject: 2 --- tem/n.lyx | 212 ++++++ tem/n1.lyx | 2320 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ tem/n2.lyx | 1269 +++++++++++++++++++++++++++++++++ tem/n3.lyx | 1734 +++++++++++++++++++++++++++++++++++++++++++++ tem/n4.lyx | 2144 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ tem/n5.lyx | 1516 +++++++++++++++++++++++++++++++++++++++ 6 files changed, 9195 insertions(+) create mode 100644 tem/n.lyx create mode 100644 tem/n1.lyx create mode 100644 tem/n2.lyx create mode 100644 tem/n3.lyx create mode 100644 tem/n4.lyx create mode 100644 tem/n5.lyx (limited to 'tem') diff --git a/tem/n.lyx b/tem/n.lyx new file mode 100644 index 0000000..c17307e --- /dev/null +++ b/tem/n.lyx @@ -0,0 +1,212 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package babel +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Topología de espacios métricos +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2018} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Topología de Espacios Métricos, Grado en Matemáticas, Dr. + Luis J. + Alías & Dr. + Miguel Ángel Javaloyes, Departamento de Matemáticas, Universidad de Murcia + (Curso 2017–18). +\end_layout + +\begin_layout Chapter +Espacios métricos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Subconjuntos notables +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n2.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Aplicaciones continuas +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n3.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Espacios compactos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Espacios conexos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/tem/n1.lyx b/tem/n1.lyx new file mode 100644 index 0000000..63ebf66 --- /dev/null +++ b/tem/n1.lyx @@ -0,0 +1,2320 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Espacios topológicos +\end_layout + +\begin_layout Standard +Un +\series bold +espacio topológico +\series default + es un par +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + en el que +\begin_inset Formula ${\cal T}\subseteq{\cal P}(X)$ +\end_inset + + y cumple que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X,\emptyset\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\{A_{1},\dots,A_{n}\}\subseteq{\cal T}\implies\bigcap_{i=1}^{n}A_{i}\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\{A_{i}\}_{i\in I}\subseteq{\cal T}\implies\bigcup_{i\in I}A_{i}\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula ${\cal T}$ +\end_inset + + es una +\series bold +topología +\series default + para +\begin_inset Formula $X$ +\end_inset + + y sus elementos son +\series bold +conjuntos abiertos +\series default +, o simplemente +\series bold +abiertos +\series default +, de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. + Llamamos +\series bold +cerrados +\series default + a los complementarios de los abiertos: +\begin_inset Formula ${\cal C_{T}}:={\cal C}:=\{X\backslash A\}_{A\in{\cal T}}$ +\end_inset + +. + Un +\series bold +entorno +\series default + de +\begin_inset Formula $p\in X$ +\end_inset + + es un abierto que contiene a +\begin_inset Formula $p$ +\end_inset + +, y llamamos +\begin_inset Formula ${\cal E}(p)$ +\end_inset + + a la familia de todos los entornos de +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall p\in A,\exists{\cal U}\in{\cal E}(p):{\cal U}\subseteq A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $x\in A$ +\end_inset + +, +\begin_inset Formula ${\cal U}=A$ +\end_inset + + es un entorno de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para cada +\begin_inset Formula $x\in A$ +\end_inset + +, sea +\begin_inset Formula ${\cal U}_{x}\in{\cal E}(x)$ +\end_inset + + tal que +\begin_inset Formula ${\cal U}_{x}\subseteq A$ +\end_inset + +, se afirma que +\begin_inset Formula $\bigcup_{x\in A}{\cal U}_{x}=A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula ${\cal U}_{x}\subseteq A\forall x\in A\implies\bigcup_{x\in A}{\cal U}_{x}\subseteq A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\forall x\in A,x\in{\cal U}_{x}\subseteq\bigcup_{x\in A}{\cal U}_{x}\implies A\subseteq\bigcup_{x\in A}{\cal U}_{x}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Propiedades de los cerrados: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $X,\emptyset\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\{C_{1},\dots,C_{n}\}\subseteq{\cal C_{T}}\implies\bigcup_{i=1}^{n}C_{i}\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\{C_{i}\}_{i\in I}\subseteq{\cal C_{T}}\implies\bigcap_{i\in I}C_{i}\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A$ +\end_inset + + es un abierto y +\begin_inset Formula $C$ +\end_inset + + un cerrado, entonces +\begin_inset Formula $A\backslash C$ +\end_inset + + es abierto y +\begin_inset Formula $C\backslash A$ +\end_inset + + es cerrado. + +\series bold +Demostración: +\series default + +\begin_inset Formula $X\backslash C$ +\end_inset + + es abierto, por lo que +\begin_inset Formula $A\backslash C=A\cap(X\backslash C)$ +\end_inset + + también. + Por otro lado, +\begin_inset Formula $X\backslash(C\backslash A)=(X\backslash C)\cup A$ +\end_inset + +, que es abierto, por lo que +\begin_inset Formula $C\backslash A$ +\end_inset + + es cerrado. +\end_layout + +\begin_layout Standard +Algunas topologías: +\end_layout + +\begin_layout Itemize +La +\series bold +topología discreta +\series default +: +\begin_inset Formula ${\cal T}_{D}:={\cal P}(X)$ +\end_inset + +, la topología más grande que se puede definir sobre +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +topología trivial +\series default + o +\series bold +indiscreta +\series default +: +\begin_inset Formula ${\cal T}_{T}=\{\emptyset,X\}$ +\end_inset + +, la topología más pequeña que se puede definir sobre +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +topología cofinita +\series default +: +\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$ +\end_inset + +. + Esta se define sobre conjuntos infinitos, pues de lo contrario es +\begin_inset Formula ${\cal T}_{CF}={\cal T}_{D}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $A,B\in{\cal T}$ +\end_inset + + no vacíos, +\begin_inset Formula $X\backslash A$ +\end_inset + + y +\begin_inset Formula $X\backslash B$ +\end_inset + + son finitos, por lo que +\begin_inset Formula $(X\backslash A)\cup(X\backslash B)=X\backslash(A\cap B)$ +\end_inset + + también lo es y +\begin_inset Formula $A\cap B\in{\cal T}$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $B=\emptyset$ +\end_inset + +, entonces +\begin_inset Formula $A\cap B=\emptyset\in{\cal T}$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\{A_{i}\}_{i\in I}\subseteq{\cal T}$ +\end_inset + + es tal que +\begin_inset Formula $\bigcup_{i\in I}A_{i}\neq\emptyset$ +\end_inset + +, entonces +\begin_inset Formula $X\backslash\bigcup_{i\in I}A_{i}=\bigcap_{i\in I}(X\backslash A_{i})$ +\end_inset + + es finito. +\end_layout + +\begin_layout Standard +Dado el espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, definimos la +\series bold +topología inducida +\series default + por +\begin_inset Formula ${\cal T}$ +\end_inset + + en +\begin_inset Formula $H\subseteq X$ +\end_inset + +, +\series bold +topología relativa +\series default + o +\series bold +topología de subespacio +\series default + como +\begin_inset Formula ${\cal T}|_{H}:={\cal T}_{H}:=\{A\cap H\}_{A\in{\cal T}}$ +\end_inset + +. + Los abiertos de +\begin_inset Formula ${\cal T}_{H}$ +\end_inset + + se llaman +\series bold +abiertos relativos +\series default +, y +\begin_inset Formula $(H,{\cal T}_{H})$ +\end_inset + + es un +\series bold +subespacio topológico +\series default + de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. + Todo subespacio topológico es un espacio topológico. + +\series bold +Demostración: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\emptyset=\emptyset\cap H$ +\end_inset + + y +\begin_inset Formula $H=X\cap H$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $A',B'\in{\cal T}_{H}$ +\end_inset + +, existen +\begin_inset Formula $A,B\in{\cal T}$ +\end_inset + + tales que +\begin_inset Formula $A'=A\cap H$ +\end_inset + + y +\begin_inset Formula $B'=B\cap H$ +\end_inset + +, por lo que +\begin_inset Formula $A'\cap B'=A\cap B\cap H\in{\cal T}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $\{A'_{i}\}_{i\in I}\subseteq{\cal T}_{H}$ +\end_inset + +, para cada +\begin_inset Formula $i\in I$ +\end_inset + + existe un +\begin_inset Formula $A_{i}\in{\cal T}$ +\end_inset + + tal que +\begin_inset Formula $A'_{i}=A_{i}\cap H$ +\end_inset + +, de modo que +\begin_inset Formula $\bigcup_{i\in I}A'_{i}=\bigcup_{i\in I}(A_{i}\cap H)=\left(\bigcup_{i\in I}A_{i}\right)\cap H\in{\cal T}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es abierto en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + entonces todo abierto relativo +\begin_inset Formula $A'\in{\cal T}_{H}$ +\end_inset + + también es abierto en el total. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + tal que +\begin_inset Formula $A'=A\cap H$ +\end_inset + +, como +\begin_inset Formula $A,H\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $A'\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, un subconjunto +\begin_inset Formula $C'\subseteq H\subseteq X$ +\end_inset + + es cerrado relativo ( +\begin_inset Formula $C'\in{\cal C}_{H})$ +\end_inset + + si y sólo si existe +\begin_inset Formula $C\in{\cal C}$ +\end_inset + + tal que +\begin_inset Formula $C'=C\cap H$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $C'\in{\cal C}_{H}$ +\end_inset + +, entonces +\begin_inset Formula $H\backslash C'\in{\cal T}_{H}$ +\end_inset + +, por lo que existe +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + con +\begin_inset Formula $H\backslash C'=A\cap H$ +\end_inset + +. + Pero si +\begin_inset Formula $C:=X\backslash A$ +\end_inset + +, entonces +\begin_inset Formula $C'=H\backslash(H\backslash C')=H\backslash(A\cap H)=H\backslash A=H\cap(X\backslash A)=H\cap C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $C'=C\cap H$ +\end_inset + + con +\begin_inset Formula $C\in{\cal C}$ +\end_inset + +, entonces +\begin_inset Formula $H\backslash C'=H\backslash(C\cap H)=H\backslash C=H\cap(X\backslash C)$ +\end_inset + +, y como +\begin_inset Formula $X\backslash C\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $H\backslash C'\in{\cal T}_{H}$ +\end_inset + +, por lo que +\begin_inset Formula $C'\in{\cal C}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Primer axioma de numerabilidad y condición de Hausdorff +\end_layout + +\begin_layout Standard +Una +\series bold +base de entornos +\series default + de +\begin_inset Formula $p\in X$ +\end_inset + + es una subfamilia +\begin_inset Formula ${\cal B}(p)\subseteq{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $\forall V\in{\cal E}(p),\exists U\in{\cal B}(p):U\subseteq V$ +\end_inset + +. + A partir de aquí, un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + satisface el +\series bold +primer axioma de numerabilidad +\series default +, o es +\series bold +1AN +\series default +, si todo punto posee una base de entornos numerable, es decir, si +\begin_inset Formula $\forall p\in X,\exists{\cal B}(p)\text{ base de }p:|{\cal B}(p)|\leq|\mathbb{N}|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $(X,{\cal T}_{T})$ +\end_inset + + es 1AN, pues cada punto posee la base +\begin_inset Formula ${\cal B}(p)=\{X\}$ +\end_inset + +. + Sin embargo, +\begin_inset Formula $(\mathbb{R},{\cal T}_{CF})$ +\end_inset + + no es 1AN. + +\series bold +Demostración: +\series default + Si lo fuera, tendríamos +\begin_inset Formula ${\cal B}(0)=\{U_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +, pero entonces +\begin_inset Formula $U_{n}=\mathbb{R}\backslash F_{n}$ +\end_inset + +, con +\begin_inset Formula $F_{n}$ +\end_inset + + finito, para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Ahora bien, como la unión numerable de conjuntos finitos es numerable y + +\begin_inset Formula $\mathbb{R}$ +\end_inset + + no lo es, podemos elegir un punto +\begin_inset Formula $x\in\mathbb{R}\backslash\left(\bigcup_{n\in\mathbb{N}}F_{n}\right)=\bigcap_{n\in\mathbb{N}}(\mathbb{R}\backslash F_{n})=\bigcap_{n\in\mathbb{N}}U_{n}$ +\end_inset + + con +\begin_inset Formula $x\neq0$ +\end_inset + +. + Sea +\begin_inset Formula $A=\mathbb{R}\backslash\{x\}\in{\cal E}(0)$ +\end_inset + +, existirá un +\begin_inset Formula $U_{i}\subseteq A$ +\end_inset + +, pero entonces +\begin_inset Formula $x\in U_{i}\subseteq A=\mathbb{R}\backslash\{x\}\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La propiedad 1AN es hereditaria, es decir, si +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es 1AN, también lo es cualquier +\begin_inset ERT +status open + +\begin_layout Plain Layout + +subes +\backslash +-pa +\backslash +-cio +\end_layout + +\end_inset + + topológico de este. + +\series bold +Demostración: +\series default + Debemos probar que si +\begin_inset Formula $Y\subseteq X$ +\end_inset + +, dado +\begin_inset Formula $y\in Y$ +\end_inset + + y +\begin_inset Formula ${\cal B}(y)$ +\end_inset + + una base de entornos de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, debemos probar que +\begin_inset Formula ${\cal B}_{Y}(y)=\{B\cap Y\}_{B\in{\cal B}(y)}$ +\end_inset + + es base de entornos de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, pues entonces +\begin_inset Formula $|{\cal B}_{Y}(y)|\leq|{\cal B}(y)|\leq|\mathbb{N}|$ +\end_inset + +. + Para ello, vemos que todo +\begin_inset Formula $A\in{\cal B}_{Y}(y)$ +\end_inset + + es entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, pues +\begin_inset Formula $A=B\cap Y\in{\cal T}_{Y}$ +\end_inset + + con +\begin_inset Formula $B$ +\end_inset + + un entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +. + Ahora, si +\begin_inset Formula $V$ +\end_inset + + es un entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, entonces +\begin_inset Formula $V$ +\end_inset + + es abierto en +\begin_inset Formula $Y$ +\end_inset + +, por lo que existe un +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + abierto en +\begin_inset Formula $X$ +\end_inset + + tal que +\begin_inset Formula $V=A\cap Y$ +\end_inset + +, y como +\begin_inset Formula $A$ +\end_inset + + es entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, existe un +\begin_inset Formula $B\in{\cal B}(y)$ +\end_inset + + con +\begin_inset Formula $B\subseteq A$ +\end_inset + +, con lo que +\begin_inset Formula $y\in B\cap Y\subseteq A\cap Y=V$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +de Hausdorff +\series default + o +\begin_inset Formula $T_{2}$ +\end_inset + + si +\begin_inset Formula $\forall p,q\in X,p\neq q;\exists U\in{\cal E}(p),V\in{\cal E}(q):U\cap V=\emptyset$ +\end_inset + +. + Así, por ejemplo, +\begin_inset Formula $(X,{\cal T}_{T})$ +\end_inset + + no es de Hausdorff para +\begin_inset Formula $|X|\geq2$ +\end_inset + +, pues dados +\begin_inset Formula $x,y\in X$ +\end_inset + + con +\begin_inset Formula $x\neq y$ +\end_inset + +, el único entorno de +\begin_inset Formula $x$ +\end_inset + + es +\begin_inset Formula $X$ +\end_inset + + y contiene a +\begin_inset Formula $y$ +\end_inset + +. +\end_layout + +\begin_layout Section +Espacios métricos +\end_layout + +\begin_layout Standard +Un +\series bold +espacio métrico +\series default + es un par +\begin_inset Formula $(X,d)$ +\end_inset + + formado por un conjunto +\begin_inset Formula $X\neq\emptyset$ +\end_inset + + y una aplicación +\begin_inset Formula $d:X\times X\rightarrow\mathbb{R}$ +\end_inset + + que cumple que +\begin_inset Formula $\forall x,y,z\in X:$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,y)\geq0\land(d(x,y)=0\iff x=y)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Simetría: +\series default + +\begin_inset Formula $d(y,x)=d(x,y)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad triangular: +\series default + +\begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula $d$ +\end_inset + + es una +\series bold +métrica +\series default + o +\series bold +distancia +\series default + sobre +\begin_inset Formula $X$ +\end_inset + +. + Ejemplos de métricas: +\end_layout + +\begin_layout Itemize + +\series bold +Métrica usual +\series default + sobre +\begin_inset Formula $\mathbb{R}$ +\end_inset + +: +\begin_inset Formula $d_{u}(x,y)=d_{|\,|}(x,y)=|x-y|$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica del ascensor +\series default + sobre +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + + +\series bold +: +\series default + +\begin_inset Formula +\[ +d((x_{1},x_{2}),(y_{1},y_{2}))=\begin{cases} +|x_{2}-y_{2}| & \text{si }x_{1}=y_{1}\\ +|x_{1}-y_{1}|+|x_{2}|+|y_{2}| & \text{si }x_{1}\neq y_{1} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Métrica discreta +\series default +: +\begin_inset Formula $d_{D}(x,y)=\begin{cases} +0 & \text{si }x=y\\ +1 & \text{si }x\neq y +\end{cases}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Espacios métricos producto +\series default +: Dados los espacios métricos +\begin_inset Formula $(X_{1},d_{1}),\dots,(X_{n},d_{n})$ +\end_inset + +, sean +\begin_inset Formula $x=(x_{1},\dots,x_{n}),y=(y_{1},\dots,y_{n})\in\prod_{i=1}^{n}X_{i}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Itemize + +\series bold +Métrica del taxi: +\series default + +\begin_inset Formula $d_{T}(x,y)=\sum_{i=1}^{n}d_{i}(x_{i},y_{i})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica euclídea: +\series default + +\begin_inset Formula $d_{E}(x,y)=\sqrt{\sum_{i=1}^{n}d_{i}(x_{i},y_{i})^{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica del ajedrez: +\series default + +\begin_inset Formula $d_{\infty}(x,y)=\max\{d_{i}(x_{i},y_{i})\}_{1\leq i\leq n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $d_{k}(x,y)=(\sum_{i=1}^{n}d_{i}(x_{i}y_{i})^{k})^{\frac{1}{k}}$ +\end_inset + +. + Entonces se tiene que +\begin_inset Formula $d_{T}=d_{1}$ +\end_inset + +, +\begin_inset Formula $d_{E}=d_{2}$ +\end_inset + + y +\begin_inset Formula $d_{\infty}$ +\end_inset + + tiene un nombre apropiado. +\end_layout + +\end_deeper +\begin_layout Itemize + +\series bold +Métrica estándar acotada +\series default +: +\begin_inset Formula $\overline{d}(x,y)=\min\{1,d(x,y)\}$ +\end_inset + +. + En general, obtenemos las mismas propiedades cambiando el 1 por cualquier + otro número real positivo. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica estándar acotada (bis) +\series default +: +\begin_inset Formula $d'(x,y)=\frac{d(x,y)}{1+d(x,y)}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica inducida +\series default + por +\begin_inset Formula $d$ +\end_inset + + en +\begin_inset Formula $H\subseteq X$ +\end_inset + + +\series bold +: +\series default + +\begin_inset Formula $d_{H}:H\times H\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $d_{H}(x,y)=d(x,y)$ +\end_inset + + para cualesquiera +\begin_inset Formula $x,y\in H$ +\end_inset + +. + Decimos que +\begin_inset Formula $(H,d_{H})$ +\end_inset + + es un +\series bold +subespacio métrico +\series default + de +\begin_inset Formula $(X,d)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Se define la distancia de un punto +\begin_inset Formula $p\in X$ +\end_inset + + a un subconjunto +\begin_inset Formula $S\subseteq X$ +\end_inset + + como +\begin_inset Formula $d(p,S)=\inf\{d(p,x)\}_{x\in S}$ +\end_inset + +. + Así, si +\begin_inset Formula $p\in S$ +\end_inset + + entonces +\begin_inset Formula $d(p,S)=0$ +\end_inset + +, si bien el recíproco no es cierto. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Círculos y bolas +\end_layout + +\begin_layout Standard +El +\series bold +círculo +\series default + en +\begin_inset Formula $(X,d)$ +\end_inset + + centrado en +\begin_inset Formula $p$ +\end_inset + + con radio +\begin_inset Formula $r$ +\end_inset + + es el conjunto +\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$ +\end_inset + +. + Del mismo modo, la +\series bold +bola abierta +\series default + en +\begin_inset Formula $(X,d)$ +\end_inset + + centrada en +\begin_inset Formula $p$ +\end_inset + + con radio +\begin_inset Formula $r$ +\end_inset + + es el conjunto +\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,d)$ +\end_inset + + es +\series bold +acotado +\series default + si +\begin_inset Formula $\exists k>0:\forall x,y\in X,d(x,y)\leq k$ +\end_inset + +, y decimos entonces que +\begin_inset Formula $d$ +\end_inset + + es una +\series bold +métrica acotada +\series default +. + Esto sucede si y sólo si +\begin_inset Formula $\exists k>0,x_{0}\in X:B(x_{0};k)=X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x_{0}\in X$ +\end_inset + +, entonces +\begin_inset Formula $\forall x\in X,d(x_{0},x)\leq k0,x_{0}\in X:H\subseteq B_{d}(x_{0};k)$ +\end_inset + +. + Por tanto las bolas son subconjuntos acotados, pues +\begin_inset Formula $B(p;r)$ +\end_inset + + está acotado por +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $\overline{B}_{d}(x;r)$ +\end_inset + + por (al menos) +\begin_inset Formula $2r$ +\end_inset + +. + Definimos el +\series bold +diámetro +\series default + de un espacio métrico acotado +\begin_inset Formula $(X,d)$ +\end_inset + + como +\begin_inset Formula $\text{diám}(X)=\sup\{d(x,y)\}_{x,y\in X}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Subconjuntos abiertos y cerrados +\end_layout + +\begin_layout Standard +En un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es un +\series bold +subconjunto abierto +\series default +, o simplemente un +\series bold +abierto +\series default +, si +\begin_inset Formula $\forall x\in A,\exists r_{x}>0:B(x;r_{x})\subseteq A$ +\end_inset + +. + Toda bola abierta es un abierto. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $B(x;r)$ +\end_inset + + una bola abierta en +\begin_inset Formula $(X,d)$ +\end_inset + + e +\begin_inset Formula $y\in B(x;r)$ +\end_inset + +, si tomamos +\begin_inset Formula $\delta$ +\end_inset + + tal que +\begin_inset Formula $0<\delta\leq r-d(x,y)$ +\end_inset + + y +\begin_inset Formula $z\in B(y;\delta)$ +\end_inset + +, por la desigualdad triangular, +\begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)0$ +\end_inset + + tal que +\begin_inset Formula $B(p;r_{i})\subseteq A_{i}$ +\end_inset + +. + Ahora bien, si tomamos +\begin_inset Formula $r:=\min\{r_{1},\dots,r_{n}\}$ +\end_inset + +, vemos que +\begin_inset Formula $B(p;r)\subseteq B(p;r_{i})\subseteq A_{i}$ +\end_inset + +, por lo que +\begin_inset Formula $B(p;r)\subseteq\bigcap_{i=1}^{n}A_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada la familia +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + de abiertos en +\begin_inset Formula $(X,d)$ +\end_inset + +, entonces +\begin_inset Formula $\bigcup_{i\in I}A_{i}$ +\end_inset + + también es un abierto. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $p\in\bigcup_{i\in I}A_{i}$ +\end_inset + + arbitrario. + Entonces existe un +\begin_inset Formula $i_{0}\in I$ +\end_inset + + tal que +\begin_inset Formula $p\in A_{i_{0}}$ +\end_inset + +, y como +\begin_inset Formula $A_{i_{0}}$ +\end_inset + + es abierto, existe un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B(p;r)\subseteq A_{i_{0}}$ +\end_inset + +. + Entonces +\begin_inset Formula $B(p;r)\subseteq A_{i_{0}}\subseteq\bigcup_{i\in I}A_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así pues, todo espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + lleva asociado un espacio topológico +\begin_inset Formula $(X,{\cal T}_{d})$ +\end_inset + +, donde +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + es el conjunto de abiertos de +\begin_inset Formula $(X,d)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Espacios metrizables +\end_layout + +\begin_layout Standard +Un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +metrizable +\series default + si existe una métrica +\begin_inset Formula $d$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + tal que +\begin_inset Formula ${\cal T}={\cal T}_{d}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La métrica discreta lleva asociada la topología discreta ( +\begin_inset Formula ${\cal T}_{D}={\cal T}_{d_{D}}$ +\end_inset + +). +\begin_inset Newline newline +\end_inset + +Todo subconjunto de +\begin_inset Formula $X$ +\end_inset + + es abierto en +\begin_inset Formula $(X,d_{D})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La topología indiscreta solo es metrizable si +\begin_inset Formula $X$ +\end_inset + + es +\series bold +unipuntual +\series default + ( +\begin_inset Formula $|X|=1$ +\end_inset + +). +\begin_inset Newline newline +\end_inset + +De lo contrario tendríamos +\begin_inset Formula $p,q\in X$ +\end_inset + + con +\begin_inset Formula $p\neq q$ +\end_inset + + y por tanto +\begin_inset Formula $d(p,q)=r>0$ +\end_inset + +, y entonces +\begin_inset Formula $q\notin B(p;\frac{r}{2})$ +\end_inset + +, pero esta bola sería un abierto distinto del vacío y del total, lo que + no existe en +\begin_inset Formula ${\cal T}_{T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado el espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + y +\begin_inset Formula $H\subseteq X$ +\end_inset + +, entonces +\begin_inset Formula ${\cal T}_{d}|_{H}={\cal T}_{d_{H}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A'\in{\cal T}_{d}|_{H}$ +\end_inset + +, existe +\begin_inset Formula $A\in{\cal T}_{d}$ +\end_inset + + tal que +\begin_inset Formula $A'=A\cap H$ +\end_inset + +. + Entonces para todo +\begin_inset Formula $p\in A'\subseteq A$ +\end_inset + + existe un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d}(p;r)\subseteq A$ +\end_inset + +, por lo que +\begin_inset Formula $B_{d}(p;r)\cap H\subseteq A'$ +\end_inset + +, pero como +\begin_inset Formula $B_{d}(p;r)\cap H=B_{d_{H}}(p;r)$ +\end_inset + +, entonces +\begin_inset Formula $A'\in{\cal T}_{d_{H}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A'\in{\cal T}_{d_{H}}$ +\end_inset + +, entonces para todo +\begin_inset Formula $p\in A'$ +\end_inset + + existe un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d_{H}}(p;r)=B_{d}(p;r)\cap H\subseteq A'$ +\end_inset + +, y si llamamos +\begin_inset Formula $A=\bigcup_{p\in A'}B_{d}(p;r)$ +\end_inset + +, se tiene que +\begin_inset Formula $A'\subseteq A\cap H=\left(\bigcup_{p\in A'}B_{d}(p;r)\right)\cap H=\bigcup_{p\in A'}(B_{d}(p;r)\cap H)=\bigcup_{p\in A'}B_{d_{H}}(p;r)\subseteq A'$ +\end_inset + + y +\begin_inset Formula $A'=A\cap H$ +\end_inset + + con +\begin_inset Formula $A\in{\cal T}_{d}$ +\end_inset + +, por lo que +\begin_inset Formula $A'\in{\cal T}_{d}|_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Todo espacio metrizable es 1AN, pues cada punto +\begin_inset Formula $x\in X$ +\end_inset + + posee la base de entornos +\begin_inset Formula ${\cal B}(x)=\{B(x;\frac{1}{n})\}_{n\in\mathbb{N}}$ +\end_inset + +. + También es +\begin_inset Formula $T_{2}$ +\end_inset + +, pues dados +\begin_inset Formula $p,q\in X$ +\end_inset + + con +\begin_inset Formula $p\neq q$ +\end_inset + +, si +\begin_inset Formula $r=d(p,q)>0$ +\end_inset + +, entonces +\begin_inset Formula $B(p;\frac{r}{2})\cap B(q;\frac{r}{2})=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Section +Métricas equivalentes +\end_layout + +\begin_layout Standard +Dos métricas +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + + son +\series bold +equivalentes +\series default + si +\begin_inset Formula ${\cal T}_{d}={\cal T}_{d'}$ +\end_inset + +. + Equivalentemente, lo son si +\begin_inset Formula $\forall p\in X,r>0;(\exists\delta>0:B_{d}(p;\delta)\subseteq B_{d'}(p;r)\land\exists\delta'>0:B_{d'}(p;\delta')\subseteq B_{d}(p;r))$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + equivalentes, dados +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +, entonces +\begin_inset Formula $B_{d'}(p;r)$ +\end_inset + + es un abierto en +\begin_inset Formula ${\cal T}_{d'}$ +\end_inset + + y por tanto en +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + +, por lo que +\begin_inset Formula $\exists\delta>0:B_{d}(p;\delta)\subseteq B_{d'}(p;r)$ +\end_inset + +. + La otra condición se prueba de forma análoga. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A$ +\end_inset + + un abierto de +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + y +\begin_inset Formula $p\in A$ +\end_inset + +, existe pues un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d}(p;r)\subseteq A$ +\end_inset + + y por tanto un +\begin_inset Formula $\delta'>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d'}(p;\delta')\subseteq B_{d}(p;r)$ +\end_inset + +, por lo que +\begin_inset Formula $A$ +\end_inset + + es abierto en +\begin_inset Formula ${\cal T}_{d'}$ +\end_inset + +. + El otro contenido se prueba de forma análoga. +\end_layout + +\begin_layout Standard +Dadas dos métricas +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + +, si existen +\begin_inset Formula $m,M>0$ +\end_inset + + tales que +\begin_inset Formula $\forall x,y\in X,md(x,y)\leq d'(x,y)\leq Md(x,y)$ +\end_inset + +, entonces +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + son equivalentes. + +\series bold +Demostración: +\series default + Dados +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +, tomando +\begin_inset Formula $\delta=\frac{r}{M}$ +\end_inset + +, se tiene que si +\begin_inset Formula $d(p,q)\leq\delta$ +\end_inset + + entonces +\begin_inset Formula $d'(p,q)\leq Md(p,q)\leq M\delta=r$ +\end_inset + +, por lo que +\begin_inset Formula $B_{d}(p;\delta)\subseteq B_{d'}(p;r)$ +\end_inset + +. + Análogamente, tomando +\begin_inset Formula $\delta'=mr$ +\end_inset + +, se tiene que +\begin_inset Formula $B_{d'}(p;\delta')\subseteq B_{d}(p;r)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, las métricas +\begin_inset Formula $d_{E}$ +\end_inset + +, +\begin_inset Formula $d_{T}$ +\end_inset + + y +\begin_inset Formula $d_{\infty}$ +\end_inset + + sobre un mismo conjunto +\begin_inset Formula $X=X_{1}\times\dots\times X_{n}$ +\end_inset + + y métricas +\begin_inset Formula $d_{1},\dots,d_{n}$ +\end_inset + + son equivalentes, y si un subconjunto es acotado para alguna de las tres + métricas también lo es para las otras dos. + +\series bold +Demostración: +\series default + Se deduce de que +\begin_inset Formula $\frac{1}{n}d_{T}(x,y)\leq d_{\infty}(x,y)\leq d_{T}(x,y)$ +\end_inset + + y +\begin_inset Formula $\frac{1}{\sqrt{n}}d_{E}(x,y)\leq d_{\infty}(x,y)\leq d_{E}(x,y)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +No obstante, las métricas euclídea y discreta no tienen por qué ser equivalentes +, pues en +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +, +\begin_inset Formula $\{(0,0)\}$ +\end_inset + + es abierto en la discreta pero no en la euclídea. + Llamamos +\begin_inset Formula $(\mathbb{R}^{n},d_{u})=(\mathbb{R}^{n},d_{E})$ +\end_inset + + con +\begin_inset Formula $d_{E}$ +\end_inset + + definido sobre +\begin_inset Formula $d_{|\,|}$ +\end_inset + + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, y +\begin_inset Formula ${\cal T}_{u}$ +\end_inset + + a la topología asociada a +\begin_inset Formula $d_{u}$ +\end_inset + +. +\end_layout + +\end_body +\end_document diff --git a/tem/n2.lyx b/tem/n2.lyx new file mode 100644 index 0000000..02c4d59 --- /dev/null +++ b/tem/n2.lyx @@ -0,0 +1,1269 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Clausura +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, la +\series bold +clausura +\series default + o +\series bold +adherencia +\series default + de +\begin_inset Formula $S$ +\end_inset + + es el menor cerrado que contiene a +\begin_inset Formula $S$ +\end_inset + +, es decir, la intersección de todos los cerrados que lo contienen, y se + denota +\begin_inset Formula +\[ +\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $p\in X$ +\end_inset + +, +\begin_inset Formula $p\in\overline{S}\iff\forall V\in{\cal E}(p),V\cap S\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in\overline{S}$ +\end_inset + + y supongamos que existe +\begin_inset Formula $V\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $V\cap S=\emptyset$ +\end_inset + +. + Entonces +\begin_inset Formula $S\subseteq X\backslash V\in{\cal C_{T}}$ +\end_inset + +, luego +\begin_inset Formula $p\in\overline{S}\subseteq X\backslash V$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in X$ +\end_inset + + tal que +\begin_inset Formula $V\cap S\neq\emptyset\forall V\in{\cal E}(x)$ +\end_inset + + y supongamos +\begin_inset Formula $p\notin\overline{S}$ +\end_inset + +. + Entonces +\begin_inset Formula $p\in X\backslash\overline{S}\in{\cal E}(p)$ +\end_inset + +, pero +\begin_inset Formula $(X\backslash\overline{S})\cap S=\emptyset$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,d)$ +\end_inset + + es un espacio métrico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, dado +\begin_inset Formula $p\in X$ +\end_inset + +, +\begin_inset Formula $p\in\overline{S}\iff d(p,S)=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +, si suponemos +\begin_inset Formula $d(p,S)=r>0$ +\end_inset + +, entonces +\begin_inset Formula $B(p;r)\cap S=\emptyset$ +\end_inset + +, lo que contradice +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $d(p,S)=0$ +\end_inset + +, +\begin_inset Formula $\forall n\in\mathbb{N},\exists q\in S:d(p,q)<\frac{1}{n}$ +\end_inset + +, luego +\begin_inset Formula $\forall n\in\mathbb{N},B(p;\frac{1}{n})\cap S\neq\emptyset$ +\end_inset + + y +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq T\implies\overline{S}\subseteq\overline{T}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $S\subseteq T\subseteq\overline{T}\in{\cal C_{T}}$ +\end_inset + +, por lo que +\begin_inset Formula $\overline{T}$ +\end_inset + + es un cerrado que contiene a +\begin_inset Formula $S$ +\end_inset + + y por tanto +\begin_inset Formula $\overline{S}\subseteq\overline{T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\bigcup_{i\in I}\overline{S_{i}}\subseteq\overline{\bigcup_{i\in I}S_{i}}$ +\end_inset + +; +\begin_inset Formula $\bigcup_{i=1}^{n}\overline{S_{i}}=\overline{\bigcup_{i=1}^{n}S_{i}}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\forall j\in I,S_{j}\subseteq\bigcup_{i\in I}S_{i}\implies\overline{S_{j}}\subseteq\overline{\bigcup_{i\in I}S_{i}}\implies\bigcup_{i\in I}\overline{S_{i}}\subseteq\overline{\bigcup_{i\in I}S_{i}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\overline{\bigcup_{i\in I}S_{i}}\subseteq\overline{\bigcup_{i\in I}\overline{S_{i}}}\overset{\text{\textbf{SI \ensuremath{I} es finito}}}{=}\bigcup_{i\in I}\overline{S_{i}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\overline{\bigcap_{i\in I}S_{i}}\subseteq\bigcap_{i\in I}\overline{S_{i}}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +\forall i\in I,S_{i}\subseteq\overline{S_{i}}\implies\bigcap_{i\in I}S_{i}\subseteq\bigcap_{i\in I}\overline{S_{i}}\implies\overline{\bigcap_{i\in I}S_{i}}\subseteq\overline{\bigcap_{i\in I}\overline{S_{i}}}=\bigcap_{i\in I}\overline{S_{i}} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\in{\cal C_{T}}\iff\overline{S}=S$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $S\in{\cal C_{T}}\implies\overline{S}\subseteq S\overset{S\subseteq\overline{S}}{\implies}S=\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $S=\overline{S}\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\overline{\overline{S}}=\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D\subseteq X$ +\end_inset + + es +\series bold +denso +\series default + en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + si +\begin_inset Formula $\overline{D}=X$ +\end_inset + +, si y sólo si cualquier abierto no vacío corta a +\begin_inset Formula $D$ +\end_inset + +. + +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +separable +\series default + si admite un subconjunto denso y numerable. +\end_layout + +\begin_layout Standard +Todo espacio numerable es separable pero el recíproco no se cumple, pues + por ejemplo, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es denso en +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + + y numerable y por tanto +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es separable, pero no es numerable. + Igualmente +\begin_inset Formula $(X,{\cal T}_{D})$ +\end_inset + + es separable si y sólo si es numerable, mientras que +\begin_inset Formula $(X,{\cal T}_{CF})$ +\end_inset + + es siempre separable (basta tomar un subconjunto numerable no finito). +\end_layout + +\begin_layout Section +Puntos de acumulación y aislados +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $S\subseteq X$ +\end_inset + +, +\begin_inset Formula $p\in X$ +\end_inset + + es un +\series bold +punto de acumulación +\series default + de +\begin_inset Formula $S$ +\end_inset + + si +\begin_inset Formula $\forall U\in{\cal E}(p),(U\backslash\{p\})\cap S\neq\emptyset$ +\end_inset + +. + Llamamos +\series bold +acumulación +\series default + o +\series bold +conjunto derivado +\series default + de +\begin_inset Formula $S$ +\end_inset + + ( +\begin_inset Formula $\text{ac}(S)$ +\end_inset + + o +\begin_inset Formula $S'$ +\end_inset + +) al conjunto de todos los puntos de acumulación de +\begin_inset Formula $S$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $p\in S$ +\end_inset + + es un +\series bold +punto aislado +\series default + de +\begin_inset Formula $S$ +\end_inset + + si +\begin_inset Formula $\exists U\in{\cal E}(p):U\cap S=\{p\}$ +\end_inset + +, y el conjunto de todos los puntos aislados de +\begin_inset Formula $S$ +\end_inset + + es +\begin_inset Formula $\text{ais}(S)=S\backslash S'$ +\end_inset + +, y se tiene que +\begin_inset Formula $\overline{S}=S\cup S'$ +\end_inset + +. +\end_layout + +\begin_layout Section +Frontera +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $S\subseteq X$ +\end_inset + +, +\begin_inset Formula $p\in X$ +\end_inset + + es un +\series bold +punto frontera +\series default + de +\begin_inset Formula $S$ +\end_inset + + si +\begin_inset Formula $\forall U\in{\cal E}(p),(U\cap S\neq\emptyset\land U\cap(X\backslash S)\neq\emptyset)$ +\end_inset + +. + Llamamos +\series bold +frontera +\series default + de +\begin_inset Formula $S$ +\end_inset + + ( +\begin_inset Formula $\partial S$ +\end_inset + + o +\begin_inset Formula $\text{fr}(S)$ +\end_inset + +) al conjunto de todos los puntos frontera de +\begin_inset Formula $S$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial S=\overline{S}\cap\overline{X\backslash S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial S\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Además, en un espacio métrico, +\begin_inset Formula +\begin{eqnarray*} +p\in\partial S & \iff & \forall r>0,(B(p;r)\cap S\neq\emptyset\land B(p;r)\cap(X\backslash S)\neq\emptyset)\\ + & \iff & \forall n\in\mathbb{N},(B(p;\frac{1}{n})\cap S\neq\emptyset\land B(p;\frac{1}{n})\cap(X\backslash S)\neq\emptyset)\\ + & \iff & d(p,S)=d(p,X\backslash S)=0 +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Section +Interior +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, el +\series bold +interior +\series default + de +\begin_inset Formula $S$ +\end_inset + + es el mayor abierto contenido en +\begin_inset Formula $S$ +\end_inset + +, es decir, la unión de todos los abiertos contenidos en +\begin_inset Formula $S$ +\end_inset + +, y se denota +\begin_inset Formula +\[ +\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage newpage +\end_inset + +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathring{S}=X\backslash\overline{X\backslash S}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $p\in\mathring{S}\implies\exists A\in{\cal T}:p\in A\subseteq\mathring{S}\subseteq S\implies A\cap(X\backslash S)=\emptyset\implies p\notin\overline{X\backslash S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\begin{array}{c} +X\backslash S\subseteq\overline{X\backslash S}\implies X\backslash\overline{X\backslash S}\subseteq S\\ +X\backslash\overline{X\backslash S}\in{\cal T} +\end{array}\implies X\backslash\overline{X\backslash S}\subseteq\mathring{S}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $S\in{\cal T}\iff S=\mathring{S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial S=\overline{S}\backslash\mathring{S}$ +\end_inset + +. +\begin_inset Formula +\[ +\partial S=\overline{S}\cap\overline{X\backslash S}=\overline{S}\cap(X\backslash\mathring{S})=\overline{S}\backslash\mathring{S} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\in{\cal T}\iff S\cap\partial S=\emptyset$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $S\in{\cal T}\implies\partial S=\overline{S}\backslash\mathring{S}=\overline{S}\backslash S\implies\partial S\cap S=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\emptyset=\partial S\cap S=(\overline{S}\backslash\mathring{S})\cap S=S\backslash\mathring{S}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $p\in\mathring{S}\iff\exists U\in{\cal E}(p):U\subseteq S$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq T\implies\mathring{S}\subseteq\mathring{T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\bigcap_{i=1}^{n}\mathring{S_{i}}=\mathring{\overbrace{\bigcap_{i=1}^{n}S_{i}}}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +\mathring{S}\cap\mathring{T}=(X\backslash\overline{X\backslash S})\cap(X\backslash\overline{X\backslash T})=X\backslash(\overline{X\backslash S}\cup\overline{X\backslash T})=\\ +=X\backslash\overline{(X\backslash S)\cup(X\backslash T)}=X\backslash\overline{X\backslash(S\cap T)}=\mathring{\overbrace{S\cap T}} +\end{array} +\] + +\end_inset + +Esto NO se cumple para la unión. +\end_layout + +\begin_layout Standard +Además, en un espacio métrico, +\begin_inset Formula +\begin{eqnarray*} +p\in\mathring{S} & \iff & \exists r>0:B(p;r)\subseteq S\\ + & \iff & \exists n\in\mathbb{N}:B(p;\frac{1}{n})\subseteq S\\ + & \iff & d(p,X\backslash S)>0 +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Section +Clausura, frontera e interior relativos +\end_layout + +\begin_layout Standard +Escribimos +\begin_inset Formula $\text{cl}_{X}(S)$ +\end_inset + +, +\begin_inset Formula $\text{int}_{X}(S)$ +\end_inset + + y +\begin_inset Formula $\partial_{X}(S)$ +\end_inset + + en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + y +\begin_inset Formula $\text{cl}_{H}(S)$ +\end_inset + +, +\begin_inset Formula $\text{int}_{H}(S)$ +\end_inset + + y +\begin_inset Formula $\partial_{H}(S)$ +\end_inset + + en +\begin_inset Formula $(H,{\cal T}|_{H})$ +\end_inset + +. + Así, sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq H\subseteq X$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{cl}_{H}(S)=\text{cl}_{X}(S)\cap H$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sabemos que +\begin_inset Formula $S\subseteq\text{cl}_{X}(S)\cap H\in{\cal C}_{H}$ +\end_inset + +, y como +\begin_inset Formula $\text{cl}_{H}(S)$ +\end_inset + + es el menor cerrado en +\begin_inset Formula $H$ +\end_inset + + que contiene a +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\text{cl}_{H}(S)\subseteq\text{cl}_{X}(S)\cap H$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in\text{cl}_{X}(S)\cap H$ +\end_inset + + y +\begin_inset Formula $U'\in{\cal E}_{H}(p)$ +\end_inset + +, entonces existe +\begin_inset Formula $U\in{\cal E}_{X}(p)$ +\end_inset + + tal que +\begin_inset Formula $U'=U\cap H$ +\end_inset + +. + Como +\begin_inset Formula $p\in\text{cl}_{X}(S)$ +\end_inset + +, +\begin_inset Formula $U\cap S\neq\emptyset$ +\end_inset + +, ahora bien, +\begin_inset Formula $U'\cap S=U\cap H\cap S=U\cap S\neq\emptyset$ +\end_inset + +, luego +\begin_inset Formula $p\in\text{cl}_{H}(S)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{int}_{X}(S)\cap H\subseteq\text{int}_{H}(S)$ +\end_inset + +, y esta inclusión suele ser estricta. +\series bold + +\begin_inset Newline newline +\end_inset + + +\series default + +\begin_inset Formula $\text{int}_{X}(S)\cap H$ +\end_inset + + es un abierto de +\begin_inset Formula $H$ +\end_inset + + contenido en +\begin_inset Formula $S$ +\end_inset + +, y por tanto +\begin_inset Formula $\text{int}_{X}(S)\cap H\subseteq\text{int}_{H}(S)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial_{H}(S)\subseteq\partial_{X}(S)\cap H$ +\end_inset + +. +\begin_inset Formula +\begin{multline*} +\begin{array}{c} +\partial_{H}(S)=\text{cl}_{H}(S)\backslash\text{int}_{H}(S)\subseteq(\text{cl}_{X}(S)\cap H)\backslash(\text{int}_{X}(S)\cap H)=\\ +=(\text{cl}_{X}(S)\backslash\text{int}_{X}(S))\cap H=\partial_{X}(S)\cap H +\end{array} +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Section +Convergencia +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + una sucesión de puntos de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + +\series bold +converge +\series default + o +\series bold +tiende +\series default + a +\begin_inset Formula $x$ +\end_inset + + ( +\begin_inset Formula $x_{n}\rightarrow x$ +\end_inset + + o +\begin_inset Formula $\lim x_{n}=x$ +\end_inset + +) si +\begin_inset Formula $\forall U\in{\cal E}(x),\exists n_{U}\in\mathbb{N}:\forall n\geq n_{U},x_{n}\in U$ +\end_inset + +. + En particular, en un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $x_{n}\rightarrow x\iff\forall\varepsilon>0,\exists n_{\varepsilon}\in\mathbb{N}:\forall n\geq n_{\varepsilon},x_{n}\in B(x;r)$ +\end_inset + +, o lo que es lo mismo, si la sucesión +\begin_inset Formula $\{d(x_{n},x)\}_{n=1}^{\infty}$ +\end_inset + + converge a 0 en +\begin_inset Formula $(\mathbb{R},d_{u})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico, +\begin_inset Formula $S\subseteq X$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + +, entonces +\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x\in\overline{S}$ +\end_inset + +, para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $B(x;\frac{1}{n})\cap S\neq\emptyset$ +\end_inset + +, luego podemos tomar +\begin_inset Formula $x_{n}\in B(x;\frac{1}{n})\cap S$ +\end_inset + + y construir así la sucesión. + Entonces +\begin_inset Formula $d(x_{n},x)<\frac{1}{n}$ +\end_inset + + y por tanto +\begin_inset Formula $x_{n}\rightarrow x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Cualquier +\begin_inset Formula $U\in{\cal E}(x)$ +\end_inset + + contiene puntos de la sucesión, de forma que +\begin_inset Formula $U\cap S\neq\emptyset$ +\end_inset + + y por tanto +\begin_inset Formula $x\in\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así pues, en un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $S$ +\end_inset + + es denso en +\begin_inset Formula $X$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\end_inset + +, y +\begin_inset Formula $x\in\partial S$ +\end_inset + + si y sólo si +\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$ +\end_inset + +. + Estas caracterizaciones sólo son ciertas en espacios métricos, pero no + es espacios topológicos arbitrarios. +\end_layout + +\end_body +\end_document diff --git a/tem/n3.lyx b/tem/n3.lyx new file mode 100644 index 0000000..245e95c --- /dev/null +++ b/tem/n3.lyx @@ -0,0 +1,1734 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es +\series bold +continua +\series default + en +\begin_inset Formula $p\in X$ +\end_inset + + si +\begin_inset Formula $\forall V\in{\cal E}(f(p)),\exists U\in{\cal E}(p):f(U)\subseteq V$ +\end_inset + +. + Equivalentemente, si +\begin_inset Formula ${\cal B}(p)$ +\end_inset + + y +\begin_inset Formula ${\cal B}(f(p))$ +\end_inset + + son bases de entornos de +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $f(p)$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall V\in{\cal B}(f(p)),\exists U\in{\cal B}(p):f(U)\subseteq V$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, dado +\begin_inset Formula $V\in{\cal B}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, pero entonces existe +\begin_inset Formula $U'\in{\cal B}(p)$ +\end_inset + + con +\begin_inset Formula $U'\subseteq U$ +\end_inset + +, luego +\begin_inset Formula $f(U')\subseteq f(U)\subseteq V$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $V'\in{\cal B}(f(p))$ +\end_inset + + con +\begin_inset Formula $V'\subseteq V$ +\end_inset + +, pero existe +\begin_inset Formula $U\in{\cal B}(p)\subseteq{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V'\subseteq V$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí que +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + + respecto a las topologías métricas +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + y +\begin_inset Formula ${\cal T}_{d'}$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in X,(d(x,p)<\delta\implies d'(f(x),f(p))<\varepsilon)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Tomando +\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$ +\end_inset + + y +\begin_inset Formula ${\cal B}(f(p))=\{B(f(p);r)\}_{r>0}$ +\end_inset + +, la equivalencia es consecuencia de lo anterior y de que +\begin_inset Formula $x\in B(p;\delta)\iff d(x,p)<\delta$ +\end_inset + + y +\begin_inset Formula $f(p)\in B(f(p);\varepsilon)\iff d(f(x),f(p))<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es 1AN, +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in X$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\{x_{n}\}_{n=1}^{\infty}\subseteq X,(x_{n}\rightarrow p\implies f(x_{n})\rightarrow f(p))$ +\end_inset + +. + Además, la implicación a la derecha se cumple para espacios topológicos + arbitrarios. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, dada una sucesión +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}\subseteq X$ +\end_inset + + que converge a +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, y por la convergencia de +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + +, existe un +\begin_inset Formula $n_{U}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{U}$ +\end_inset + + entonces +\begin_inset Formula $x_{n}\in U$ +\end_inset + +, pero entonces +\begin_inset Formula $f(x_{n})\in f(U)\subseteq V$ +\end_inset + +, luego +\begin_inset Formula $f(x_{n})\rightarrow f(p)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula ${\cal B}(p)$ +\end_inset + + una base de entornos de +\begin_inset Formula $p$ +\end_inset + + numerable, si suponemos que +\begin_inset Formula $f$ +\end_inset + + no es continua, entonces +\begin_inset Formula $\exists V\in{\cal B}(f(p)):\forall U\in{\cal B}(p),f(U)\nsubseteq V$ +\end_inset + +. + Sea ahora +\begin_inset Formula $U_{1}\in{\cal B}(p)$ +\end_inset + + y +\begin_inset Formula $V_{1}$ +\end_inset + + un entorno de +\begin_inset Formula $p$ +\end_inset + + que no contiene a +\begin_inset Formula $U_{1}$ +\end_inset + +. + Podemos tomar +\begin_inset Formula $V'_{1}:=V_{1}\cap U_{1}\in{\cal E}(p)$ +\end_inset + + y existirá +\begin_inset Formula $U_{2}\in{\cal B}(p)$ +\end_inset + + con +\begin_inset Formula $U_{2}\subseteq V'_{1}$ +\end_inset + +. + Como +\begin_inset Formula ${\cal B}(p)$ +\end_inset + + es numerable, podemos hacer esto sucesivamente ordenando así sus elementos + en una sucesión +\begin_inset Formula $\{U_{n}\}_{n=1}^{\infty}$ +\end_inset + + de entornos con +\begin_inset Formula $U_{1}\supseteq U_{2}\supseteq\dots$ +\end_inset + +. + Con esto formamos una sucesión +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + con +\begin_inset Formula $x_{i}\in U_{i}$ +\end_inset + + y +\begin_inset Formula $f(x_{i})\notin V$ +\end_inset + +, de modo que +\begin_inset Formula $x_{n}\rightarrow p$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + mientras que +\begin_inset Formula $f(x_{n})\not\rightarrow f(p)$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, lo que contradice la hipótesis. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(X,{\cal T})\overset{f}{\rightarrow}(Y,{\cal T}')\overset{g}{\rightarrow}(Z,{\cal T}'')$ +\end_inset + + aplicaciones continuas en +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $f(p)$ +\end_inset + +, respectivamente, entonces +\begin_inset Formula $g\circ f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $W\in{\cal E}(g(f(p)))$ +\end_inset + +, como +\begin_inset Formula $g$ +\end_inset + + es continua en +\begin_inset Formula $f(p)$ +\end_inset + +, existe +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + + con +\begin_inset Formula $g(V)\subseteq W$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +. + Entonces +\begin_inset Formula $g(f(U))\subseteq g(V)\subseteq W$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $S\subseteq X$ +\end_inset + +, si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +, entonces +\begin_inset Formula $f(p)\in\overline{f(S)}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, pero como +\begin_inset Formula $p\in\overline{S}$ +\end_inset + + entonces +\begin_inset Formula $U\cap S\neq\emptyset$ +\end_inset + +, luego +\begin_inset Formula $\emptyset\neq f(U\cap S)\subseteq f(U)\cap f(S)\subseteq V\cap f(S)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Continuidad global +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua si lo es en cualquier punto de +\begin_inset Formula $X$ +\end_inset + +. + Equivalentemente, +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall A\in{\cal T}',f^{-1}(A)\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $f$ +\end_inset + + continua, +\begin_inset Formula $A\in{\cal T}'$ +\end_inset + +. + Dado +\begin_inset Formula $p\in f^{-1}(A)$ +\end_inset + + arbitrario, entonces +\begin_inset Formula $f(p)\in A\in{\cal E}(f(p))$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + es continua, existe +\begin_inset Formula $V_{p}\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(V_{p})\subseteq A$ +\end_inset + +, luego +\begin_inset Formula $V_{p}\subseteq f^{-1}(A)$ +\end_inset + +. + Pero entonces +\begin_inset Formula $\bigcup_{p\in f^{-1}(A)}V_{p}=f^{-1}(A)\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $A\in{\cal E}(f(p))$ +\end_inset + +. + Entonces +\begin_inset Formula $p\in f^{-1}(A)$ +\end_inset + +, y como por hipótesis +\begin_inset Formula $f^{-1}(A)\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $f^{-1}(A)\in{\cal E}(p)$ +\end_inset + + es pues el entorno de +\begin_inset Formula $p$ +\end_inset + + buscado para que +\begin_inset Formula $f$ +\end_inset + + sea continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall p\in X,V\in{\cal E}(f(p));f^{-1}(V)\in{\cal E}(p)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Trivial. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Cada +\begin_inset Formula $A\in{\cal T}'$ +\end_inset + + se puede escribir como +\begin_inset Formula $A=\bigcup_{q\in A}V_{q}$ +\end_inset + + con +\begin_inset Formula $V_{q}\in{\cal E}(q)$ +\end_inset + +, de modo que +\begin_inset Formula $f^{-1}(A)=f^{-1}(\bigcup_{q\in A}V_{q})=\bigcup_{q\in A}f^{-1}(V_{q})$ +\end_inset + +. + Por tanto, si los +\begin_inset Formula $f^{-1}(V_{q})$ +\end_inset + + son abiertos, +\begin_inset Formula $f^{-1}(A)$ +\end_inset + + también lo es por ser unión arbitraria de abiertos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall C\in{\cal C}_{{\cal T}'},f^{-1}(C)\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua y +\begin_inset Formula $C$ +\end_inset + + es cerrado en +\begin_inset Formula $(Y,{\cal T}')$ +\end_inset + +, entonces +\begin_inset Formula $X\backslash f^{-1}(C)=f^{-1}(Y\backslash C)\in{\cal T}$ +\end_inset + +, luego +\begin_inset Formula $f^{-1}(C)\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Análoga. +\end_layout + +\begin_layout Standard +Algunas aplicaciones continuas: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $id:(X,{\cal T})\rightarrow(X,{\cal T}')$ +\end_inset + + es continua si y sólo si +\begin_inset Formula ${\cal T}'\subseteq{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Una aplicación constante siempre es continua. +\end_layout + +\begin_layout Enumerate +Toda +\begin_inset Formula $f:(X,{\cal T}_{D})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Toda +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}_{T})$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f,g:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + son continuas entonces +\begin_inset Formula $f+g,fg:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + también lo son. + Si además +\begin_inset Formula $g(x)\neq0\forall x\in X$ +\end_inset + +, entonces +\begin_inset Formula $\frac{f}{g}:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Las proyecciones +\begin_inset Formula $\pi_{i}:(\mathbb{R}^{n},d_{u})\rightarrow(\mathbb{R},d_{u})$ +\end_inset + + con +\begin_inset Formula $\pi_{i}(x_{1},\dots,x_{n})=x_{i}$ +\end_inset + + son continuas. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:(X,{\cal T})\rightarrow(\mathbb{R}^{n},{\cal T}_{u})$ +\end_inset + + dada por +\begin_inset Formula $f(x)=(f_{1}(x),\dots,f_{n}(x))$ +\end_inset + +, siendo +\begin_inset Formula $f_{1},\dots,f_{n}:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + las llamadas +\series bold +funciones coordenadas +\series default + de +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $f_{1},\dots,f_{n}$ +\end_inset + + lo son. +\end_layout + +\begin_layout Enumerate +Las funciones polinómicas +\begin_inset Formula $f:(\mathbb{R}^{n},{\cal T}_{u})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + sobre una o varias variables son siempre continuas. +\end_layout + +\begin_layout Standard +Para toda aplicación continua +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + y todo +\begin_inset Formula $S\subseteq X$ +\end_inset + + se tiene que +\begin_inset Formula $f(\overline{S})\subseteq\overline{f(S)}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Homeomorfismos +\end_layout + +\begin_layout Standard +Un +\series bold +homeomorfismo +\series default + es una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + biyectiva, continua y con aplicación inversa continua. + Dos espacios topológicos son +\series bold +homeomorfos +\series default + si existe un homeomorfismo entre ellos, y una +\series bold +propiedad topológica +\series default + es una propiedad de los espacios topológicos invariante por homomorfismos. + Ejemplos: +\end_layout + +\begin_layout Itemize +Dos espacios topológicos triviales, o dos discretos, son homeomorfos si + y sólo si existe una aplicación biyectiva entre ellos. +\end_layout + +\begin_layout Itemize +En +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + +, son homeomorfos todos los intervalos de la forma +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $[c,d]$ +\end_inset + +; +\begin_inset Formula $(a,b)$ +\end_inset + + y +\begin_inset Formula $(c,d)$ +\end_inset + +; +\begin_inset Formula $(a,+\infty)$ +\end_inset + + y +\begin_inset Formula $(b,+\infty)$ +\end_inset + +; +\begin_inset Formula $(-\infty,a)$ +\end_inset + + y +\begin_inset Formula $(-\infty,b)$ +\end_inset + +, y +\begin_inset Formula $(a,+\infty)$ +\end_inset + + y +\begin_inset Formula $(-\infty,b)$ +\end_inset + +. + +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es homeomorfo a cualquier intervalo abierto y acotado, por ejemplo, por + +\begin_inset Formula $\tan:(-\frac{\pi}{2},\frac{\pi}{2})\rightarrow\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada una aplicación +\emph on +biyectiva +\emph default + +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + +, son equivalentes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es un homeomorfismo. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\in{\cal T}\iff f(A)\in{\cal T}'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $C\in{\cal C_{T}}\iff f(C)\in{\cal C}_{{\cal T}'}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $g:=f^{-1}:Y\rightarrow X$ +\end_inset + + continua y +\begin_inset Formula $A\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $f(A)=(f^{-1})^{-1}(A)=g^{-1}(A)\in{\cal T}'$ +\end_inset + +. + Recíprocamente, si +\begin_inset Formula $f(A)\in{\cal T}'$ +\end_inset + + entonces +\begin_inset Formula $f^{-1}(f(A))=A\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\implies1]$ +\end_inset + + Para ver que +\begin_inset Formula $f$ +\end_inset + + es continua, dado +\begin_inset Formula $A\subseteq X$ +\end_inset + +, si +\begin_inset Formula $f(A)\in{\cal T}'$ +\end_inset + + entonces +\begin_inset Formula $f^{-1}(f(A))=A\in{\cal T}$ +\end_inset + +. + Para ver que +\begin_inset Formula $g:=f^{-1}$ +\end_inset + + es continua, dado +\begin_inset Formula $A\subseteq X$ +\end_inset + +, si +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + entonces +\begin_inset Formula $g^{-1}(A)=f(A)\in{\cal T}'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\iff3]$ +\end_inset + + Análogo usando la caracterización de continuidad por cerrados. +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es +\series bold +abierta +\series default + si +\begin_inset Formula $\forall A\in{\cal T},f(A)\in{\cal T}'$ +\end_inset + +, y es +\series bold +cerrada +\series default + si +\begin_inset Formula $\forall C\in{\cal C_{T}},f(C)\in{\cal C}_{{\cal T}'}$ +\end_inset + +. + Así, una aplicación biyectiva es un homeomorfismo si y sólo si es continua + y abierta (o continua y cerrada). +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es abierta si y sólo si +\begin_inset Formula $\forall S\subseteq X,f(\mathring{S})\subseteq\mathring{\overbrace{f(S)}}$ +\end_inset + +, es un homeomorfismo si y sólo si es biyectiva y +\begin_inset Formula $\forall S\subseteq X,f(\mathring{S})=\mathring{\overbrace{f(S)}}$ +\end_inset + +, y es cerrada si y sólo si +\begin_inset Formula $\forall S\subseteq X,\overline{f(S)}\subseteq f(\overline{S})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Continuidad en subespacios +\end_layout + +\begin_layout Standard +La aplicación inclusión +\begin_inset Formula $i:(H,{\cal T}_{H})\looparrowright(X,{\cal T})$ +\end_inset + + es continua. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A\in{\cal T}$ +\end_inset + +, +\begin_inset Formula $i^{-1}(A)=A\cap H\in{\cal T}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + con +\begin_inset Formula $f(X)\subseteq H\subseteq Y$ +\end_inset + + es continua en +\begin_inset Formula $p\in X$ +\end_inset + + si y sólo si +\begin_inset Formula $\hat{f}:(X,{\cal T})\rightarrow(H,{\cal T}_{H})$ +\end_inset + + con +\begin_inset Formula $\hat{f}(x)=f(x)$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. + En particular, +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\hat{f}$ +\end_inset + + es continua. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, dado +\begin_inset Formula $V'\in{\cal E}_{{\cal T}'_{H}}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $V\in{\cal E}_{{\cal T}'}(f(p))$ +\end_inset + + con +\begin_inset Formula $V'=V\cap H$ +\end_inset + +, luego existe +\begin_inset Formula $U\in{\cal E}_{{\cal T}}(p)$ +\end_inset + + tal que +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, y entonces +\begin_inset Formula $f'(U)=f(U)=f(U)\cap H\subseteq V\cap H=V'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(H,{\cal T}'_{H})$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, como la inclusión es continua en +\begin_inset Formula $f(p)$ +\end_inset + + entonces +\begin_inset Formula $f=i\circ\hat{f}$ +\end_inset + + es también continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in H\subseteq X$ +\end_inset + + entonces +\begin_inset Formula $f|_{H}:(H,{\cal T}_{H})\rightarrow(Y,{\cal T}')$ +\end_inset + + también es continua en +\begin_inset Formula $p$ +\end_inset + +. + En particular, si +\begin_inset Formula $f$ +\end_inset + + es continua también lo es +\begin_inset Formula $f|_{H}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Como la inclusión es continua en +\begin_inset Formula $p$ +\end_inset + +, +\begin_inset Formula $f|_{H}=f\circ i$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in X$ +\end_inset + + si y sólo si existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $f|_{U}$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Basta tomar +\begin_inset Formula $U=X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f|_{U}:(U,{\cal T}_{U})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, sea +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, por la continuidad de +\begin_inset Formula $f|_{U}$ +\end_inset + + existe +\begin_inset Formula $U'\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $f|_{U}(U')\subseteq V$ +\end_inset + +, con lo que +\begin_inset Formula $f(U')=f|_{U}(U')\subseteq V$ +\end_inset + +, lo que prueba la continuidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + y +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + una familia de abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + con +\begin_inset Formula $X=\bigcup_{i\in I}A_{i}$ +\end_inset + +, si +\begin_inset Formula $f|_{A_{i}}$ +\end_inset + + es continua para todo +\begin_inset Formula $i\in I$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $p\in X$ +\end_inset + +, existe un +\begin_inset Formula $i_{0}\in I$ +\end_inset + + tal que +\begin_inset Formula $p\in A_{i_{0}}\in{\cal E}(p)$ +\end_inset + + y por la propiedad anterior, +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + y +\begin_inset Formula $\{C_{1},\dots,C_{n}\}$ +\end_inset + + una familia finita de cerrados de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + con +\begin_inset Formula $X=\bigcup_{i=1}^{n}C_{i}$ +\end_inset + +, si +\begin_inset Formula $f|_{C_{i}}$ +\end_inset + + es continua para todo +\begin_inset Formula $i\in1,\dots,n$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es continua. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $C'\in(Y,{\cal T}')$ +\end_inset + +, +\begin_inset Formula $f^{-1}(C')=f^{-1}(C')\cap X=f^{-1}(C')\cap\left(\bigcup_{i=1}^{n}C_{i}\right)=\bigcup_{i=1}^{n}(C_{i}\cap f^{-1}(C'))=\bigcup_{i=1}^{n}f|_{C_{i}}^{-1}(C')$ +\end_inset + +. + Como +\begin_inset Formula $f|_{C_{i}}$ +\end_inset + + es continua para cualquier +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $f|_{C_{i}}^{-1}(C')$ +\end_inset + + es cerrado en +\begin_inset Formula $(C_{i},{\cal T}_{C_{i}})$ +\end_inset + +, y como +\begin_inset Formula $C_{i}$ +\end_inset + + es cerrado en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + entonces +\begin_inset Formula $f|_{C_{i}}^{-1}(C')$ +\end_inset + + es cerrado en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. + Por tanto +\begin_inset Formula $f^{-1}(C')$ +\end_inset + + es cerrado en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es continua. +\end_layout + +\begin_layout Section +Continuidad uniforme e isometrías +\end_layout + +\begin_layout Standard +Definimos la +\series bold +oscilación +\series default + de una función +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + en un intervalo +\begin_inset Formula $I\subseteq D$ +\end_inset + + como +\begin_inset Formula +\[ +\theta(f,J)=\begin{cases} +\sup\{f(I)\}-\inf\{f(I)\} & \text{si }f(I)\text{ está acotado}\\ ++\infty & \text{si }f(I)\text{ no está acotado} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + es +\series bold +uniformemente continua +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x_{1},x_{2}\in X,(d(x_{1},x_{2})<\delta\implies d'(f(x_{1}),f(x_{2}))<\varepsilon)$ +\end_inset + +. + Toda aplicación uniformemente continua es continua. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +isometría +\series default + a una aplicación +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + tal que +\begin_inset Formula $\forall x_{1},x_{2}\in X,(d(x_{1},x_{2})=d'(f(x_{1}),f(x_{2})))$ +\end_inset + +. + Toda isometría es inyectiva y uniformemente continua. + Finalmente, una aplicación +\begin_inset Formula $f:(X,d)\rightarrow(X,d')$ +\end_inset + + es +\series bold +lipschitziana +\series default + si +\begin_inset Formula $\exists M>0:\forall x,y\in X,d'(f(x),f(y))\leq Md(x,y)$ +\end_inset + +, y es además +\series bold +contráctil +\series default + si podemos encontrar un +\begin_inset Formula $M<1$ +\end_inset + + para el que se cumpla la propiedad. +\end_layout + +\end_body +\end_document diff --git a/tem/n4.lyx b/tem/n4.lyx new file mode 100644 index 0000000..574a4a5 --- /dev/null +++ b/tem/n4.lyx @@ -0,0 +1,2144 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +recubrimiento +\series default + de +\begin_inset Formula $S\subseteq X$ +\end_inset + + es una familia +\begin_inset Formula ${\cal A}=\{A_{i}\}_{i\in I}$ +\end_inset + + de subconjuntos de +\begin_inset Formula $X$ +\end_inset + + con +\begin_inset Formula $S\subseteq\bigcup_{i\in I}A_{i}$ +\end_inset + +, y un +\series bold +subrecubrimiento +\series default + es una familia +\begin_inset Formula ${\cal B}\subseteq{\cal A}$ +\end_inset + + que es también recubrimiento de +\begin_inset Formula $S$ +\end_inset + +. + Un recubrimiento +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + de +\begin_inset Formula $S\subseteq X$ +\end_inset + + es +\series bold +finito +\series default + si está formado por una cantidad finita de conjuntos, y es +\series bold +abierto +\series default + en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + si cada +\begin_inset Formula $A_{i}$ +\end_inset + + lo es. + Con esto, un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +compacto +\series default + si todo recubrimiento abierto de +\begin_inset Formula $X$ +\end_inset + + admite un subrecubrimiento finito. +\end_layout + +\begin_layout Section +Subespacios compactos +\end_layout + +\begin_layout Standard +El subespacio +\begin_inset Formula $(K,{\cal T}_{K})$ +\end_inset + + de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es compacto si y sólo si todo recubrimiento de +\begin_inset Formula $K$ +\end_inset + + por abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + admite un subrecubrimiento finito. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento de +\begin_inset Formula $K$ +\end_inset + + por abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, entonces +\begin_inset Formula $\{A_{i}\cap K\}_{i\in I}$ +\end_inset + + es un recubrimiento de +\begin_inset Formula $K$ +\end_inset + + por abiertos de +\begin_inset Formula $(K,{\cal T}_{K})$ +\end_inset + +, por lo que existe una familia finita +\begin_inset Formula $A_{i_{1}},\dots,A_{i_{r}}$ +\end_inset + + con +\begin_inset Formula $K=(A_{i_{1}}\cap K)\cup\dots\cup(A_{i_{r}}\cap K)$ +\end_inset + +, con lo que +\begin_inset Formula $K\subseteq A_{i_{1}}\cup\dots\cup A_{i_{r}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\{A'_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento de +\begin_inset Formula $K$ +\end_inset + + por abiertos de +\begin_inset Formula $(K,{\cal T}_{K})$ +\end_inset + +, y sea por tanto +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + una familia de abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + con +\begin_inset Formula $A'_{i}=A_{i}\cap K$ +\end_inset + +, entonces +\begin_inset Formula $K\subseteq\bigcup_{i\in I}A_{i}$ +\end_inset + + y por hipótesis existen +\begin_inset Formula $A_{i_{1}},\dots,A_{i_{r}}$ +\end_inset + + tales que +\begin_inset Formula $K\subseteq A_{i_{1}}\cup\dots\cup A_{i_{r}}$ +\end_inset + +, de modo que +\begin_inset Formula $K=(A_{i_{1}}\cap K)\cup\dots\cup(A_{i_{r}}\cap K)=A'_{i_{1}}\cup\dots\cup A'_{i_{r}}$ +\end_inset + +. + Por tanto +\begin_inset Formula $K$ +\end_inset + + es compacto. +\end_layout + +\begin_layout Standard +Por tanto el concepto de compacidad es intrínseco del espacio topológico, + pues no depende del espacio total donde se considere. +\end_layout + +\begin_layout Standard +Todo cerrado +\begin_inset Formula $C$ +\end_inset + + de un compacto +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es compacto. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula ${\cal A}=\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento de +\begin_inset Formula $C$ +\end_inset + + por abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, entonces +\begin_inset Formula ${\cal A}\cup\{X\backslash C\}$ +\end_inset + + es un recubrimiento abierto de +\begin_inset Formula $X$ +\end_inset + +, del que extraemos un subrecubrimiento finito +\begin_inset Formula $\{A_{i_{1}},\dots,A_{i_{n}}\}$ +\end_inset + +, de modo que +\begin_inset Formula $C\subseteq X=\{A_{i_{1}},\dots,A_{i_{n}}\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Heine-Borel +\series default + afirma que todo intervalo cerrado y acotado +\begin_inset Formula $[a,b]$ +\end_inset + + en +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + + es compacto. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula ${\cal A}=\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento de +\begin_inset Formula $[a,b]$ +\end_inset + + por abiertos de +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + + y definimos +\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ +\end_inset + +. + Como +\begin_inset Formula $a\in[a,b]$ +\end_inset + +, existe +\begin_inset Formula $i_{0}\in I$ +\end_inset + + con +\begin_inset Formula $a\in A_{i_{0}}\in{\cal T}_{u}$ +\end_inset + +, luego +\begin_inset Formula $\exists\varepsilon>0:[a,a+\varepsilon)\subseteq A_{i_{0}}$ +\end_inset + +, de modo que +\begin_inset Formula $[a,a+\varepsilon)\subseteq G$ +\end_inset + + y +\begin_inset Formula $G\neq\emptyset$ +\end_inset + +. + Ahora veamos que +\begin_inset Formula $G$ +\end_inset + + es cerrado. + Sea +\begin_inset Formula $y\in[a,b]\backslash G$ +\end_inset + +, y como +\begin_inset Formula $y\in[a,b]$ +\end_inset + +, existe +\begin_inset Formula $j_{0}\in I$ +\end_inset + + con +\begin_inset Formula $y\in A_{j_{0}}\in{\cal T}_{u}$ +\end_inset + +, con lo que +\begin_inset Formula $\exists\delta>0:(y-\delta,y+\delta)\subseteq A_{j_{0}}$ +\end_inset + +, e +\begin_inset Formula $(y-\delta,y+\delta)\subseteq[a,b]\backslash G$ +\end_inset + +. + En efecto, si existiera un +\begin_inset Formula $z\in(y-\delta,y+\delta)\cap G$ +\end_inset + +, como +\begin_inset Formula $z\in G$ +\end_inset + +, entonces +\begin_inset Formula $[a,z]\subseteq\bigcup_{j=1}^{n}A_{i_{j}}$ +\end_inset + +, y como +\begin_inset Formula $\{A_{i_{0}},\dots,A_{i_{n}},A_{j_{0}}\}\in{\cal P}_{0}({\cal A})$ +\end_inset + +, entonces para +\begin_inset Formula $t\in(y-\delta,y+\delta)$ +\end_inset + + se tendría +\begin_inset Formula $[a,t]\subseteq\bigcup_{j=1}^{n}A_{i_{j}}\cup A_{j_{0}}$ +\end_inset + +, llegando así a la contradicción de que +\begin_inset Formula $y\in G$ +\end_inset + +. + En consecuencia, +\begin_inset Formula $(y-\delta,y+\delta)\subseteq[a,b]\backslash G$ +\end_inset + +, y como +\begin_inset Formula $y$ +\end_inset + + es un elemento arbitrario de +\begin_inset Formula $[a,b]\backslash G$ +\end_inset + +, se tiene que +\begin_inset Formula $[a,b]\backslash G$ +\end_inset + + es abierto y por tanto +\begin_inset Formula $G$ +\end_inset + + es cerrado. + Finalmente, vemos que +\begin_inset Formula $G=[a,b]$ +\end_inset + +. + En efecto, sea +\begin_inset Formula $s=\sup(G)$ +\end_inset + +, y como +\begin_inset Formula $G$ +\end_inset + + es cerrado entonces +\begin_inset Formula $s\in G$ +\end_inset + +. + Supongamos que +\begin_inset Formula $s0$ +\end_inset + + con +\begin_inset Formula $C\subseteq B_{d}(x_{0};r)\subseteq B_{d}[x_{0};r]$ +\end_inset + +, y como +\begin_inset Formula $C$ +\end_inset + + es un cerrado contenido en el compacto +\begin_inset Formula $B_{d}[x_{0};r]$ +\end_inset + +, es también compacto. +\end_layout + +\begin_layout Standard +Todo subespacio compacto +\begin_inset Formula $K$ +\end_inset + + de un espacio topológico Hausdorff +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es cerrado. + +\series bold +Demostración: +\series default + Probamos que +\begin_inset Formula $X\backslash K$ +\end_inset + + es abierto, para lo cual vemos que todos sus puntos son interiores, es + decir, +\begin_inset Formula $\forall p\in X\backslash K,\exists A\in{\cal E}(p):A\subseteq X\backslash K$ +\end_inset + +. + Dado +\begin_inset Formula $p\in X\backslash K$ +\end_inset + +, para cada +\begin_inset Formula $x\in K$ +\end_inset + +, como +\begin_inset Formula $p\neq x$ +\end_inset + +, la condición de Hausdorff nos asegura que existen +\begin_inset Formula $A_{x}\in{\cal E}(p)$ +\end_inset + + y +\begin_inset Formula $B_{x}\in{\cal E}(x)$ +\end_inset + + disjuntos. + Ahora bien, +\begin_inset Formula $\{B_{x}\}_{x\in K}$ +\end_inset + + es un recubrimiento de +\begin_inset Formula $K$ +\end_inset + + por abiertos de +\begin_inset Formula $X$ +\end_inset + + del que podemos extraer un subrecubrimiento finito +\begin_inset Formula $B_{x_{1}},\dots,B_{x_{r}}$ +\end_inset + + para ciertos +\begin_inset Formula $x_{1},\dots,x_{r}\in K$ +\end_inset + +. + Sea entonces +\begin_inset Formula $A:=\bigcap_{i=1}^{r}A_{x_{i}}\in{\cal E}(p)$ +\end_inset + +, dado +\begin_inset Formula $a\in A$ +\end_inset + +, para cada +\begin_inset Formula $i\in\{1,\dots,r\}$ +\end_inset + + se tiene que +\begin_inset Formula $a\in A_{x_{i}}$ +\end_inset + + y por tanto +\begin_inset Formula $a\notin B_{x_{i}}$ +\end_inset + +, luego +\begin_inset Formula $a\notin K$ +\end_inset + + y por tanto +\begin_inset Formula $A\subseteq X\backslash K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Todo subespacio compacto +\begin_inset Formula $K$ +\end_inset + + de un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + es acotado. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $a\in X$ +\end_inset + +, para todo +\begin_inset Formula $x\in K$ +\end_inset + + existe un +\begin_inset Formula $n_{x}\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $d(x,a)0$ +\end_inset + +, para +\begin_inset Formula $p\in X$ +\end_inset + +, existe +\begin_inset Formula $\delta_{p}>0$ +\end_inset + + tal que +\begin_inset Formula $\forall y\in X,(d(p,y)<\delta_{p}\implies d'(f(p),f(y))<\frac{\varepsilon}{2})$ +\end_inset + +. + Sea ahora +\begin_inset Formula $\delta'_{p}:=\frac{\delta_{p}}{2}$ +\end_inset + + y +\begin_inset Formula $\{B(p;\delta'_{p})\}_{p\in X}$ +\end_inset + + un recubrimiento abierto de +\begin_inset Formula $X$ +\end_inset + +, podemos extraer un subrecubrimiento finito +\begin_inset Formula $\{B(p_{1};\delta'_{p_{1}}),\dots,B(p_{r};\delta'_{p_{r}})\}$ +\end_inset + +, y llamamos +\begin_inset Formula $\delta:=\min\{\delta'_{p_{1}},\dots,\delta'_{p_{r}}\}$ +\end_inset + +. + Sean +\begin_inset Formula $x,y\in X$ +\end_inset + + con +\begin_inset Formula $d(x,y)<\delta$ +\end_inset + +, entonces existe +\begin_inset Formula $i\in\{1,\dots r\}$ +\end_inset + + con +\begin_inset Formula $d(x,p_{i})<\delta_{p_{i}}$ +\end_inset + +, luego +\begin_inset Formula $d(y,p_{i})\leq d(y,x)+d(x,p_{i})<\delta+\delta'_{p_{i}}\leq2\delta'_{p_{i}}=\delta_{p_{i}}$ +\end_inset + +. + Así, +\begin_inset Formula $d'(f(x),f(p_{i}))<\frac{\varepsilon}{2}$ +\end_inset + + y +\begin_inset Formula $d'(f(y),f(p_{i}))<\frac{\varepsilon}{2}$ +\end_inset + +, y por tanto +\begin_inset Formula $d'(f(y),f(x))\leq d'(f(y),f(p_{i}))+d'(f(p_{i}),f(x))<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +Compacidad por sucesiones +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +compacto por sucesiones +\series default +si toda sucesión admite una subsucesión convergente. + Ahora probaremos que todo espacio métrico compacto es compacto por sucesiones, + y viceversa. +\end_layout + +\begin_layout Standard +Primero probamos que si +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + es una sucesión en +\begin_inset Formula $(X,d)$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + es un punto de acumulación de ella, +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + posee una subsucesión convergente a +\begin_inset Formula $p$ +\end_inset + +. + En efecto, sea +\begin_inset Formula $S=\{x_{n}\}_{n\in\mathbb{N}}$ +\end_inset + + el conjunto de puntos, para todo +\begin_inset Formula $r>0$ +\end_inset + + debe ser +\begin_inset Formula $(B(p;r)\backslash\{p\})\cap S$ +\end_inset + + infinito, pues si fuera finito +\begin_inset Formula $\{x_{n_{1}},\dots,x_{n_{r}}\}$ +\end_inset + + podríamos escoger +\begin_inset Formula $r'>0$ +\end_inset + + con +\begin_inset Formula $r'n_{k-1}$ +\end_inset + + entonces como +\begin_inset Formula $B(p;\frac{1}{k+1})\cap S$ +\end_inset + + es infinito, podemos tomar +\begin_inset Formula $x_{n_{k+1}}\in B(p;\frac{1}{k+1})$ +\end_inset + + con +\begin_inset Formula $n_{k+1}>n_{k}$ +\end_inset + +, formando una subsucesión +\begin_inset Formula $\{x_{n_{k}}\}_{k}$ +\end_inset + + que converge a +\begin_inset Formula $p$ +\end_inset + +. + Esto también vale para cualquier espacio topológico 1AN y Hausdorff. +\end_layout + +\begin_layout Standard +Ahora vemos que todo subconjunto infinito +\begin_inset Formula $S$ +\end_inset + + de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + compacto tiene al menos un punto de acumulación. + Supongamos que no los tiene, es decir, +\begin_inset Formula $\forall p\in X,\exists U_{p}\in{\cal E}(p):(U_{p}\backslash\{p\})\cap S=\emptyset$ +\end_inset + +. + Entonces podríamos considerar el recubrimiento abierto +\begin_inset Formula $\{U_{p}\}_{p\in X}$ +\end_inset + + de +\begin_inset Formula $X$ +\end_inset + +, del que podemos extraer un subrecubrimiento finito +\begin_inset Formula $\{U_{p_{1}},\dots,U_{p_{r}}\}$ +\end_inset + +, pero +\begin_inset Formula $S=S\cap X=S\cap(U_{p_{1}}\cup\dots\cup U_{p_{r}})=(S\cap U_{p_{1}})\cup\dots\cup(S\cap U_{p_{r}})\subseteq\{p_{1},\dots,p_{r}\}$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto podemos probar que todo espacio métrico compacto es compacto por + sucesiones. + Supongamos que +\begin_inset Formula $(X,d)$ +\end_inset + + es compacto y sea +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + una sucesión en +\begin_inset Formula $X$ +\end_inset + +. + Ahora sea +\begin_inset Formula $S=\{x_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +. + Si +\begin_inset Formula $S$ +\end_inset + + es finito, debe existir +\begin_inset Formula $p\in X$ +\end_inset + + que se repite infinitas veces en la sucesión, y estos términos forman una + subsucesión constante y por tanto convergente. + Si es infinito, posee un punto de acumulación y por tanto tiene una subsucesión + convergente. +\end_layout + +\begin_layout Standard +Observamos que toda sucesión acotada en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + con +\begin_inset Formula $d_{T}$ +\end_inset + +, +\begin_inset Formula $d_{E}$ +\end_inset + + o +\begin_inset Formula $d_{\infty}$ +\end_inset + + posee una subsucesión convergente. +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,d)$ +\end_inset + + es +\series bold +precompacto +\series default + o +\series bold +totalmente acotado +\series default + si para cada +\begin_inset Formula $r>0$ +\end_inset + + existe una cantidad finita de puntos +\begin_inset Formula $\{x_{1},\dots,x_{m}\}$ +\end_inset + + de +\begin_inset Formula $X$ +\end_inset + + tales que +\begin_inset Formula $X=B(x_{1};r)\cup\dots\cup B(x_{m};r)$ +\end_inset + +. + Esta definición es casi igual a la de compacto, pero no se considera un + recubrimiento abierto cualquiera sino solo los de la forma +\begin_inset Formula $\{B(p;r)\}_{p\in X}$ +\end_inset + +. + Así, todo espacio métrico compacto es precompacto, y todo espacio precompacto + es acotado. +\end_layout + +\begin_layout Standard +Todo espacio métrico compacto por sucesiones es precompacto. + Sea +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico compacto por sucesiones tal que +\begin_inset Formula $\exists r>0:\forall S\subseteq X,X\neq\bigcup_{x\in S}B(x;r)$ +\end_inset + +, y construiremos una sucesión +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + de la siguiente forma. + Sea +\begin_inset Formula $x_{1}\in X$ +\end_inset + + cualquiera y supongamos que hemos construido +\begin_inset Formula $x_{1},\dots,x_{m}$ +\end_inset + + de modo que +\begin_inset Formula $d(x_{i},x_{j})>r\forall i,j\leq m,i\neq j$ +\end_inset + +, y como por la hipótesis +\begin_inset Formula $X\neq\bigcup_{i=1}^{m}B(x_{i};r)$ +\end_inset + +, existe +\begin_inset Formula $x_{m+1}\in X\backslash\bigcup_{i=1}^{m}B(x_{i};r)$ +\end_inset + + y tenemos por inducción una sucesión tal que +\begin_inset Formula $d(x_{i},x_{j})>r\forall i\neq j$ +\end_inset + +. + Ahora bien, por la compacidad por sucesiones ha de existir una subsucesión + +\begin_inset Formula $\{x_{n_{k}}\}_{k=1}^{\infty}$ +\end_inset + + convergente a un +\begin_inset Formula $p\in X$ +\end_inset + +, pero entonces existe +\begin_inset Formula $k_{0}\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $d(p,x_{n_{k}})<\frac{r}{2}$ +\end_inset + + para +\begin_inset Formula $k\geq k_{0}$ +\end_inset + + y entonces +\begin_inset Formula $d(x_{n_{k}},x_{n_{k+1}})\leq r$ +\end_inset + +, lo cual es absurdo. +\end_layout + +\begin_layout Standard +Todo espacio métrico precompacto es separable. + Si +\begin_inset Formula $(X,d)$ +\end_inset + + es precompacto, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existen +\begin_inset Formula $\{x_{1n},\dots,x_{r_{n}n}\}$ +\end_inset + + tales que +\begin_inset Formula $X=\bigcup_{i=1}^{r_{n}}B(x_{in};\frac{1}{n})$ +\end_inset + +. + El conjunto +\begin_inset Formula $D=\{x_{in}\}_{n\in\mathbb{N},1\leq i\leq r_{n}}$ +\end_inset + + es numerable por ser unión numerable de conjuntos finitos. + Probaremos que es denso viendo que, dado +\begin_inset Formula $p\in X$ +\end_inset + +, se tiene +\begin_inset Formula $p\in\overline{D}$ +\end_inset + +. + Para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existe +\begin_inset Formula $x_{in}$ +\end_inset + + tal que +\begin_inset Formula $p\in B(x_{in};\frac{1}{n})$ +\end_inset + +, pero entonces +\begin_inset Formula $x_{in}\in B(p;\frac{1}{n})$ +\end_inset + + y +\begin_inset Formula $B(p;\frac{1}{n})$ +\end_inset + + corta a +\begin_inset Formula $D$ +\end_inset + +, luego +\begin_inset Formula $D$ +\end_inset + + corta a todos los entornos de la base +\begin_inset Formula $\{B(p;\frac{1}{n})\}_{n\in\mathbb{N}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un recubrimiento abierto +\begin_inset Formula ${\cal A}$ +\end_inset + + de +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $r>0$ +\end_inset + + es un +\series bold +número de Lebesgue +\series default + de +\begin_inset Formula ${\cal A}$ +\end_inset + + si +\begin_inset Formula $\forall p\in X,\exists A_{p}\in{\cal A}:B(p;r)\subseteq A_{p}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +lema de Lebesgue +\series default + afirma que si +\begin_inset Formula $(X,d)$ +\end_inset + + es compacto por sucesiones entonces todo recubrimiento abierto admite un + número de Lebesgue. + Sea +\begin_inset Formula ${\cal A}=\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento abierto de +\begin_inset Formula $X$ +\end_inset + + que no admite un número de Lebesgue. + Entonces +\begin_inset Formula $\forall r>0,\exists p\in X:\forall i\in I,B(p;r)\nsubseteq A_{i}$ +\end_inset + +. + Sea +\begin_inset Formula $\{x_{n}\}_{n\in\mathbb{N}}\subseteq X$ +\end_inset + + tal que +\begin_inset Formula $B(x_{n};\frac{1}{n})\nsubseteq A_{i}\forall i\in I$ +\end_inset + +, como +\begin_inset Formula $(X,d)$ +\end_inset + + es compacto por sucesiones, existirá +\begin_inset Formula $\{x_{n_{k}}\}_{k\in\mathbb{N}}$ +\end_inset + + convergente a un +\begin_inset Formula $p\in X$ +\end_inset + +. + Sea +\begin_inset Formula $i_{0}\in I$ +\end_inset + + con +\begin_inset Formula $p\in A_{i_{0}}\in{\cal T}_{d}$ +\end_inset + +, existe +\begin_inset Formula $r_{0}>0$ +\end_inset + + con +\begin_inset Formula $B(p;r_{0})\subseteq A_{i_{0}}$ +\end_inset + +. + Sea +\begin_inset Formula $N\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $d(p,x_{N})<\frac{r_{0}}{2}$ +\end_inset + + y +\begin_inset Formula $\frac{1}{N}<\frac{r_{0}}{2}$ +\end_inset + +. + Ahora, tomando +\begin_inset Formula $t\in B(x_{N};\frac{1}{N})$ +\end_inset + + vemos que +\begin_inset Formula $d(p,y)\leq d(p,x_{N})+d(x_{N},y)0$ +\end_inset + + con +\begin_inset Formula $B(y;r)\subseteq U$ +\end_inset + + y si +\begin_inset Formula $z\in B(y;r)$ +\end_inset + +, la unión del arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + + y el radio que une +\begin_inset Formula $y$ +\end_inset + + con +\begin_inset Formula $z$ +\end_inset + + es un arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $z$ +\end_inset + +, luego +\begin_inset Formula $B(y;r)\subseteq A$ +\end_inset + + y, como +\begin_inset Formula $y$ +\end_inset + + es arbitrario, +\begin_inset Formula $A$ +\end_inset + + es abierto. + Ahora bien, sea +\begin_inset Formula $y\in U\backslash A$ +\end_inset + +, existe +\begin_inset Formula $r>0$ +\end_inset + + con +\begin_inset Formula $B(y;r)\subseteq U$ +\end_inset + +. + Pero si existiera +\begin_inset Formula $z\in B(y;r)$ +\end_inset + + con +\begin_inset Formula $z\in A$ +\end_inset + +, la unión del arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $z$ +\end_inset + + y el radio que une +\begin_inset Formula $z$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + + es un arco que une +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + + y por tanto +\begin_inset Formula $y\in A\#$ +\end_inset + +, luego +\begin_inset Formula $B(y;r)\subseteq U\backslash A$ +\end_inset + +, y como +\begin_inset Formula $y$ +\end_inset + + es arbitrario, +\begin_inset Formula $U\backslash A$ +\end_inset + + es abierto y +\begin_inset Formula $A$ +\end_inset + + es cerrado. + Como +\begin_inset Formula $A$ +\end_inset + + es abierto y cerrado en un espacio conexo y +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $p\in A$ +\end_inset + +, entonces +\begin_inset Formula $A=U$ +\end_inset + + y +\begin_inset Formula $U$ +\end_inset + + es conexo por arcos. +\end_layout + +\end_body +\end_document -- cgit v1.2.3