From c34b47089a133e58032fe4ea52f61efacaf5f548 Mon Sep 17 00:00:00 2001 From: Juan Marin Noguera Date: Sun, 4 Dec 2022 22:49:17 +0100 Subject: Oops --- ts/n1.lyx | 70 +++++++++++++++++++++++++++++++-------------------------------- 1 file changed, 35 insertions(+), 35 deletions(-) (limited to 'ts/n1.lyx') diff --git a/ts/n1.lyx b/ts/n1.lyx index 4936758..5bb57f7 100644 --- a/ts/n1.lyx +++ b/ts/n1.lyx @@ -158,7 +158,7 @@ topología trivial indiscreta \series default a -\begin_inset Formula ${\cal T}_{\text{ind}}:=\{\emptyset,X\}$ +\begin_inset Formula ${\cal T}_{\text{ind}}\coloneqq \{\emptyset,X\}$ \end_inset y @@ -166,7 +166,7 @@ indiscreta topología discreta \series default a -\begin_inset Formula ${\cal T}_{\text{dis}}:={\cal P}(X)$ +\begin_inset Formula ${\cal T}_{\text{dis}}\coloneqq {\cal P}(X)$ \end_inset . @@ -268,7 +268,7 @@ entorno \end_inset es un elemento de -\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$ +\begin_inset Formula ${\cal E}(x)\coloneqq \{U\in{\cal T}\mid x\in{\cal U}\}$ \end_inset . @@ -343,7 +343,7 @@ En \end_inset tenemos la distancia usual -\begin_inset Formula $d_{u}(x,y):=|x-y|$ +\begin_inset Formula $d_{u}(x,y)\coloneqq |x-y|$ \end_inset . @@ -368,7 +368,7 @@ d_{p}(x,y):=\left(\sum_{k=1}^{n}d(x_{k},y_{k})^{p}\right)^{\frac{1}{p}} \end_inset , y -\begin_inset Formula $d_{\infty}(x,y):=\max_{k=1}^{n}d(x_{k},y_{k})$ +\begin_inset Formula $d_{\infty}(x,y)\coloneqq \max_{k=1}^{n}d(x_{k},y_{k})$ \end_inset . @@ -485,7 +485,7 @@ inducida \end_inset a la topología -\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$ +\begin_inset Formula ${\cal T}_{d}\coloneqq \{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$ \end_inset . @@ -537,7 +537,7 @@ Dados un espacio topológico \end_inset , -\begin_inset Formula ${\cal T}_{Y}:=\{U\cap Y\}_{U\in{\cal T}}$ +\begin_inset Formula ${\cal T}_{Y}\coloneqq \{U\cap Y\}_{U\in{\cal T}}$ \end_inset es una topología sobre @@ -578,7 +578,7 @@ La -esfera \series default , -\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ +\begin_inset Formula $\mathbb{S}^{n}(r)\coloneqq \{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ \end_inset . @@ -610,7 +610,7 @@ El intervalo cerrado \series default -\begin_inset Formula $I:=[0,1]\subseteq\mathbb{R}$ +\begin_inset Formula $I\coloneqq [0,1]\subseteq\mathbb{R}$ \end_inset o el @@ -630,7 +630,7 @@ El cilindro \series default , -\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$ +\begin_inset Formula $C\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$ \end_inset , cono de rotación sobre el eje @@ -666,7 +666,7 @@ El toro \series default , -\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ +\begin_inset Formula $\mathbb{T}\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ \end_inset , cono de rotación sobre el eje @@ -695,7 +695,7 @@ status open \end_inset Tenemos -\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ +\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\coloneqq (\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ \end_inset , luego el cono de rotación es @@ -820,7 +820,7 @@ La cinta de Möbius \series default , -\begin_inset Formula $M:=\{(\cos\theta(3-t\sin\frac{\theta}{2}),\sin\theta(3-t\sin\frac{\theta}{2}),t\cos\frac{\theta}{2})\}_{\theta\in[0,2\pi],t\in[-1,1]}$ +\begin_inset Formula $M\coloneqq \{(\cos\theta(3-t\sin\frac{\theta}{2}),\sin\theta(3-t\sin\frac{\theta}{2}),t\cos\frac{\theta}{2})\}_{\theta\in[0,2\pi],t\in[-1,1]}$ \end_inset . @@ -947,7 +947,7 @@ restricción del rango \end_inset , dada por -\begin_inset Formula $f'(x):=f(x)$ +\begin_inset Formula $f'(x)\coloneqq f(x)$ \end_inset , es continua. @@ -1039,7 +1039,7 @@ suma \end_inset , -\begin_inset Formula $s(x,y):=x+y$ +\begin_inset Formula $s(x,y)\coloneqq x+y$ \end_inset , con la topología usual. @@ -1065,7 +1065,7 @@ Como los abiertos en \end_inset , -\begin_inset Formula $t:=s(x_{0},y_{0})$ +\begin_inset Formula $t\coloneqq s(x_{0},y_{0})$ \end_inset y @@ -1122,7 +1122,7 @@ producto \end_inset , -\begin_inset Formula $p(x,y):=xy$ +\begin_inset Formula $p(x,y)\coloneqq xy$ \end_inset , con la topología usual. @@ -1144,7 +1144,7 @@ Dado \end_inset , -\begin_inset Formula $t:=p(x_{0},y_{0})$ +\begin_inset Formula $t\coloneqq p(x_{0},y_{0})$ \end_inset , @@ -1156,7 +1156,7 @@ Dado \end_inset y -\begin_inset Formula $\delta:=\min\{1,\frac{r}{|x_{0}|+|y_{0}|+1}\}$ +\begin_inset Formula $\delta\coloneqq \min\{1,\frac{r}{|x_{0}|+|y_{0}|+1}\}$ \end_inset , para @@ -1199,7 +1199,7 @@ diagonal \end_inset , -\begin_inset Formula $d(x):=(x,\dots,x)$ +\begin_inset Formula $d(x)\coloneqq (x,\dots,x)$ \end_inset , con la topología usual. @@ -1217,7 +1217,7 @@ Basta ver que, dada una bola , su inversa es un abierto. Tenemos -\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)