From b5f1a38caff0ba87a8ad8fcb458bab08b11271f0 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Wed, 17 Jun 2020 00:17:30 +0200 Subject: Fundamental groups --- ts/n.lyx | 75 +- ts/n4.lyx | 293 +++++-- ts/n5.lyx | 2762 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 3044 insertions(+), 86 deletions(-) create mode 100644 ts/n5.lyx (limited to 'ts') diff --git a/ts/n.lyx b/ts/n.lyx index bf8b555..0fe0bd7 100644 --- a/ts/n.lyx +++ b/ts/n.lyx @@ -136,9 +136,14 @@ Diapositivas de clase, Pascual Lucas (2019–20), Departamento de Matemáticas, \end_layout \begin_layout Itemize -Modelling CPV, Ian Richard Cole (2015), +Ian Richard Cole (2015). + +\emph on +Modelling CPV +\emph default +, \begin_inset Flex URL -status collapsed +status open \begin_layout Plain Layout @@ -151,8 +156,13 @@ https://repository.lboro.ac.uk/articles/Modelling_CPV/9523520 \end_layout \begin_layout Itemize -Essential Topology, Martin D. +Martin D. Crossley (2005), Springer. + +\emph on +Essential Topology +\emph default +. \end_layout \begin_layout Itemize @@ -170,6 +180,37 @@ https://en.wikipedia.org/ . \end_layout +\begin_layout Itemize +Klint Qinami. + +\emph on +Algebraic Topology +\emph default +, +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://www.cs.princeton.edu/~kqinami/pdfs/algebraic_topology_notes.pdf +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Itemize +James R. + Munkres (2000). + +\emph on +Topología +\emph default + (segunda edición). + +\end_layout + \begin_layout Chapter Espacios topológicos \end_layout @@ -224,6 +265,34 @@ filename "n4.lyx" \end_inset +\end_layout + +\begin_layout Chapter +El grupo fundamental +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +El número de Euler +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n6.lyx" + +\end_inset + + \end_layout \end_body diff --git a/ts/n4.lyx b/ts/n4.lyx index b292e28..2a486a1 100644 --- a/ts/n4.lyx +++ b/ts/n4.lyx @@ -551,7 +551,7 @@ Dos espacios \begin_inset Formula $X$ \end_inset - es + e \begin_inset Formula $Y$ \end_inset @@ -700,7 +700,7 @@ Si \begin_inset Formula $Y$ \end_inset - son homeomorfismos, + son homeomorfos, \begin_inset Formula $X\simeq Y$ \end_inset @@ -1326,20 +1326,31 @@ Circunferencia \end_layout \begin_layout Standard -Llamamos +Una \series bold -aplicación exponencial +aplicación recubridora \series default - a -\begin_inset Formula $e:\mathbb{R}\to\mathbb{S}^{1}$ + es una función +\begin_inset Formula $r:X\to Y$ \end_inset - dada por -\begin_inset Formula $e(\theta):=(\cos(2\pi\theta),\sin(2\pi\theta))$ + sobreyectiva tal que para todo +\begin_inset Formula $x\in X$ \end_inset -. - Sean un camino + existe +\begin_inset Formula $U\in{\cal E}(x)$ +\end_inset + + con +\begin_inset Formula $r:U\to r(U)$ +\end_inset + + homeomorfismo. +\end_layout + +\begin_layout Standard +Sean un camino \begin_inset Formula $\alpha:[0,1]\to\mathbb{S}^{1}$ \end_inset @@ -1380,91 +1391,207 @@ levantamiento \end_inset . +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $r:X\to Y$ +\end_inset + + una aplicación recubridora, +\begin_inset Formula $\alpha:[0,1]\to Y$ +\end_inset + + un camino, +\begin_inset Formula $x_{0}\in X$ +\end_inset + + e +\begin_inset Formula $y_{0}:=r(x_{0})$ +\end_inset + +, existe un único camino +\begin_inset Formula $\tilde{\alpha}:[0,1]\to X$ +\end_inset + + tal que +\begin_inset Formula $\alpha=r\circ\tilde{\alpha}$ +\end_inset + + y +\begin_inset Formula $\tilde{\alpha}(0)=r_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Standard \begin_inset Note Comment status open \begin_layout Plain Layout -Claramente $e$ es continua y sobreyectiva. - Sea un abierto $U -\backslash -subsetneq -\backslash -mathbb{S}^1$, existe $V -\backslash -subseteq -\backslash -mathbb R$ tal que $e|_V:V -\backslash -to U$ es un homeomorfismo, y como esto es periódico, $e^{-1}(U)= -\backslash -bigcup_{n -\backslash -in -\backslash -mathbb Z}V_n$ con $e|_{V_n}:V_n -\backslash -to U$ homeomorfismo. - + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $V$ +\end_inset + + un abierto de +\begin_inset Formula $Y$ +\end_inset + +, para cada +\begin_inset Formula $x\in r^{-1}(V)$ +\end_inset + + existe +\begin_inset Formula $U_{x}\in{\cal E}(x)$ +\end_inset + + tal que +\begin_inset Formula $r|_{U_{x}}$ +\end_inset + + es un homeomorfismo, luego +\begin_inset Formula $V_{x}:=V\cap f(U_{X})$ +\end_inset + + es abierto, con lo que +\begin_inset Formula $f^{-1}(V_{x})$ +\end_inset + + es abierto con +\begin_inset Formula $x\in f^{-1}(V_{x})\subseteq f^{-1}(V)$ +\end_inset + + y +\begin_inset Formula $r^{-1}(V)=\bigcup_{x\in r^{-1}(V)}V_{x}$ +\end_inset + +, que es abierto. \end_layout \begin_layout Plain Layout -Como $ -\backslash -alpha$ es continua, para $ -\backslash -theta -\backslash -in[0,1]$ existe un intervalo $I_ -\backslash -theta$ con $ -\backslash -alpha(I_ -\backslash -theta) -\backslash -subseteq U_ -\backslash -theta$ para un cierto $U_ -\backslash -theta -\backslash -ni -\backslash -alpha( -\backslash -theta)$ que queramos (por ejemplo, $B( -\backslash -alpha( -\backslash -theta), -\backslash -varepsilon)$. - Como $ -\backslash -alpha([0,1])$ es compacto, existe un subrecubrimiento finito $ -\backslash -{I_{ -\backslash -theta_1}, -\backslash -dots,I_{ -\backslash -theta_n} -\backslash -}$ (podemos suponer $ -\backslash -theta_1< -\backslash -dots< -\backslash -theta_n$). - En cada $I_k$, $e$ es biyectiva definida salvo suma de un entero, luego - vamos <> y sale. +Para +\begin_inset Formula $t\in[0,1]$ +\end_inset + + existe +\begin_inset Formula $U_{t}\in{\cal E}(t)$ +\end_inset + + con +\begin_inset Formula $r|_{U_{t}}$ +\end_inset + + homeomorfismo, y como +\begin_inset Formula $\alpha$ +\end_inset + + es continua, existe +\begin_inset Formula $I_{t}\subseteq[0,1]$ +\end_inset + + tal que +\begin_inset Formula $\alpha(I_{t})\subseteq r(U_{t})$ +\end_inset + +. + Como +\begin_inset Formula $\alpha([0,1])$ +\end_inset + + es compacto, existe un subrecubrimiento finito +\begin_inset Formula $\{I_{t_{1}},\dots,I_{t_{n}}\}$ +\end_inset + + del recubrimiento +\begin_inset Formula $\{I_{t}\}_{t\in[0,1]}$ +\end_inset + + de +\begin_inset Formula $[0,1]$ +\end_inset + +, y podemos suponer +\begin_inset Formula $t_{1}<\dots