#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Un \series bold grupo abeliano \series default es un par \begin_inset Formula $(A,+)$ \end_inset formada por un conjunto \begin_inset Formula $A$ \end_inset y una \series bold suma \series default \begin_inset Formula $+:A\times A\to A$ \end_inset asociativa, conmutativa, con un elemento neutro \begin_inset Formula $0\in A$ \end_inset llamado \series bold cero \series default y en el que cada \begin_inset Formula $a\in A$ \end_inset posee un simétrico u \series bold opuesto \series default \begin_inset Formula $-a$ \end_inset . Un \series bold anillo \series default es una terna \begin_inset Formula $(A,+,\cdot)$ \end_inset formada por un grupo abeliano \begin_inset Formula $(A,+)$ \end_inset y un \series bold producto \series default \begin_inset Formula $\cdot:A\times A\to A$ \end_inset asociativo y distributivo respecto a la suma ( \begin_inset Formula $(a+b)\cdot c=(a\cdot c)+(b\cdot c)$ \end_inset y \begin_inset Formula $c\cdot(a+b)=(c\cdot a)+(c\cdot b)$ \end_inset ). \end_layout \begin_layout Standard Un anillo es \series bold conmutativo \series default si su producto es conmutativo, y tiene \series bold identidad \series default si este tiene elemento neutro \begin_inset Formula $1\in A$ \end_inset llamado \series bold uno \series default . Salvo que se indique lo contrario, al hablar de anillos nos referiremos a anillos conmutativos y con identidad. \end_layout \begin_layout Enumerate \begin_inset Formula $\mathbb{Z}$ \end_inset , \begin_inset Formula $\mathbb{Q}$ \end_inset , \begin_inset Formula $\mathbb{R}$ \end_inset , \begin_inset Formula $\mathbb{C}$ \end_inset y \begin_inset Formula $\mathbb{Z}_{n}$ \end_inset para \begin_inset Formula $n\in\mathbb{N}$ \end_inset son anillos con la suma y el producto usuales. \end_layout \begin_layout Enumerate Para \begin_inset Formula $c\in\mathbb{C}$ \end_inset , \begin_inset Formula $\mathbb{Z}[c]\coloneqq\left\{ \sum_{n=0}^{\infty}a_{n}c^{n}\right\} _{a\in\mathbb{Z}^{\mathbb{N}}}\subseteq\mathbb{C}$ \end_inset es un anillo con la suma y el producto de complejos, y en particular lo es \begin_inset Formula $\mathbb{Z}[\text{i}]\coloneqq\{a+b\text{i}\}_{a,b\in\mathbb{Z}}$ \end_inset , el \series bold anillo de los enteros de Gauss \series default . \end_layout \begin_layout Enumerate El conjunto de funciones \begin_inset Formula $\mathbb{R}\to\mathbb{R}$ \end_inset que se anulan en casi todos los puntos es un anillo conmutativo sin identidad con la suma y producto de funciones. \end_layout \begin_layout Enumerate Si \begin_inset Formula $A_{1},\dots,A_{n}$ \end_inset son anillos, \begin_inset Formula $\prod_{i=1}^{n}A_{i}$ \end_inset es un anillo con las operaciones componente a componente, el \series bold anillo producto \series default de \begin_inset Formula $A_{1},\dots,A_{n}$ \end_inset . \end_layout \begin_layout Enumerate Dado un anillo \begin_inset Formula $A\llbracket X\rrbracket\coloneqq A^{\mathbb{N}}$ \end_inset es un anillo con la suma componente a componente y el producto \begin_inset Formula $a\cdot b\coloneqq(\sum_{k=0}^{n}a_{k}b_{n-k})_{n}$ \end_inset , el \series bold anillo de las series de potencias \series default sobre \begin_inset Formula $A$ \end_inset , y un \begin_inset Formula $a\in A$ \end_inset se suele escribir con la notación \begin_inset Formula $\sum_{n}a_{n}X^{n}$ \end_inset . \end_layout \begin_layout Standard El producto tiene precedencia sobre la suma, y escribimos \begin_inset Formula $a-b\coloneqq a+(-b)$ \end_inset y \begin_inset Formula $ab\coloneqq a\cdot b$ \end_inset . Si \begin_inset Formula $A$ \end_inset es un anillo y \begin_inset Formula $a\in A$ \end_inset , definimos \begin_inset Formula $0a=0$ \end_inset , \begin_inset Formula $a^{0}=1$ \end_inset y, para \begin_inset Formula $n\in\mathbb{N}$ \end_inset , \begin_inset Formula $(n+1)a\coloneqq na+a$ \end_inset y \begin_inset Formula $a^{n+1}\coloneqq a^{n}a$ \end_inset . \end_layout \begin_layout Standard Dados un anillo \begin_inset Formula $A$ \end_inset y \begin_inset Formula $a,b,c\in A$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $a0=0$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula $a0+0=a0=a(0+0)=a0+a0\implies0=a0.$ \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $-(-a)=a$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula $x=-(-a)\implies0=x+(-a)\implies a=x+(-a)+a=x.$ \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $a-b=c\iff b+c=a$ \end_inset . \begin_inset Note Comment status open \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset \begin_inset Formula $a-b=c\implies a=a-b+b=c+b=b+c$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset \begin_inset Formula $b+c=a\implies c=-b+b+c=-b+a=a-b$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $(a-b)c=ac-bc$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula $(a-b)c+bc=ac-bc+bc=ac\implies ac-bc=(a-b)c.$ \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $(-a)b=-(ab)$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula $(-a)b=(0-a)b=0b-ab=0-ab=-ab.$ \end_inset \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout Anillo trivial si y solo si \begin_inset Formula $1=0$ \end_inset , salvo isomorfismo. \end_layout \end_inset \end_layout \begin_layout Standard Dados dos anillos \begin_inset Formula $A$ \end_inset y \begin_inset Formula $B$ \end_inset , un \series bold homomorfismo de anillos \series default es una \begin_inset Formula $f:A\to B$ \end_inset tal que \begin_inset Formula $f(1)=1$ \end_inset y, para \begin_inset Formula $x,y\in A$ \end_inset , \begin_inset Formula $f(x+y)=f(x)+f(y)$ \end_inset y \begin_inset Formula $f(xy)=f(x)f(y)$ \end_inset . Entonces \begin_inset Formula $f(0)=0$ \end_inset \begin_inset Note Comment status open \begin_layout Plain Layout , pues \begin_inset Formula $f(0)+f(0)=f(0+0)=f(0)=f(0)+0$ \end_inset , \end_layout \end_inset y \begin_inset Formula $\forall a\in A,f(-a)=-f(a)$ \end_inset \begin_inset Note Comment status open \begin_layout Plain Layout , pues \begin_inset Formula $f(-a)+f(a)=f(-a+a)=f(0)=0$ \end_inset \end_layout \end_inset . Un homomorfismo \begin_inset Formula $f:A\to B$ \end_inset es inyectivo si y sólo si \begin_inset Formula $\ker f=0$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Obvio. \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset \begin_inset Formula $f(a)=f(b)\implies0=f(a)-f(b)=f(a-b)\implies a-b=0\implies a=b$ \end_inset . \end_layout \begin_layout Standard Un \series bold isomorfismo de anillos \series default es un homomorfismo biyectivo, y entonces su inversa es un homomorfismo. En efecto, sea \begin_inset Formula $f:A\to B$ \end_inset un isomorfismo, como \begin_inset Formula $f(1)=1$ \end_inset , \begin_inset Formula $f^{-1}(1)=1$ \end_inset ; si \begin_inset Formula $b,b'\in B$ \end_inset , sean \begin_inset Formula $a\coloneqq f^{-1}(b)$ \end_inset y \begin_inset Formula $a'\coloneqq f^{-1}(b')$ \end_inset , entonces \begin_inset Formula $f(a+a')=f(a)+f(a')=b+b'$ \end_inset , luego \begin_inset Formula $f^{-1}(b+b')=a+a'=f^{-1}(b)+f^{-1}(b')$ \end_inset , y análogamente \begin_inset Formula $f^{-1}(bb')=f^{-1}(b)f^{-1}(b')$ \end_inset . Dos anillos \begin_inset Formula $A$ \end_inset y \begin_inset Formula $B$ \end_inset son \series bold isomorfos \series default , \begin_inset Formula $A\cong B$ \end_inset , si existe un isomorfismo entre ellos. \end_layout \begin_layout Standard Llamamos \series bold anillo cero \series default o \series bold trivial \series default al único con un solo elemento, o en el que \begin_inset Formula $1=0$ \end_inset , salvo isomorfismo. En efecto, todo conjunto unipuntual es un anillo con la suma y producto definidos de la única forma posible, la única función entre estos anillos es un isomorfismo y, si el anillo \begin_inset Formula $A$ \end_inset cumple \begin_inset Formula $1=0$ \end_inset , para \begin_inset Formula $a\in A$ \end_inset , \begin_inset Formula $a=a1=a0=0$ \end_inset . \end_layout \begin_layout Section Elementos notables \end_layout \begin_layout Standard Sea \begin_inset Formula $A$ \end_inset un anillo. Un \begin_inset Formula $a\in A$ \end_inset es \series bold invertible \series default o \series bold unidad \series default si existe \begin_inset Formula $b\in A$ \end_inset con \begin_inset Formula $ab=1$ \end_inset , en cuyo caso \begin_inset Formula $b$ \end_inset es único, pues \begin_inset Formula $ac=1\implies b=bac=c$ \end_inset ; lo llamamos \series bold inverso \series default de \begin_inset Formula $a$ \end_inset o \begin_inset Formula $a^{-1}$ \end_inset , y \begin_inset Formula $(a^{-1})^{-1}=a$ \end_inset . Llamamos \series bold grupo de las unidades \series default de \begin_inset Formula $A$ \end_inset , \begin_inset Formula $U(A)$ \end_inset o \begin_inset Formula $A^{*}$ \end_inset , al grupo abeliano formado por las unidades de \begin_inset Formula $A$ \end_inset con el producto. \end_layout \begin_layout Standard Un \begin_inset Formula $a\in A$ \end_inset es \series bold cancelable \series default si \begin_inset Formula $\forall x,y\in A,(ax=ay\implies x=y)$ \end_inset , si y sólo si no es divisor de cero. Toda unidad es cancelable, pues podemos cancelar multiplicando por el inverso. Si \begin_inset Formula $A$ \end_inset es finito se da el recíproco, pues \begin_inset Formula $x\mapsto ax$ \end_inset es inyectiva y por tanto suprayectiva y existe \begin_inset Formula $x$ \end_inset con \begin_inset Formula $ax=1$ \end_inset . Para \begin_inset Formula $A$ \end_inset infinito esto no es cierto en general, pues \begin_inset Formula $2$ \end_inset es cancelable en \begin_inset Formula $\mathbb{Z}$ \end_inset pero no es unidad. \end_layout \begin_layout Standard Un \begin_inset Formula $a\in A$ \end_inset es \series bold divisor de cero \series default si existe \begin_inset Formula $c\in A\setminus\{0\}$ \end_inset con \begin_inset Formula $ac=0$ \end_inset , si y sólo si no es cancelable. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Si es cancelable, \begin_inset Formula $ac=0=a0\implies c=0$ \end_inset , luego no es divisor de cero. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Sean \begin_inset Formula $x,y\in A$ \end_inset distintos con \begin_inset Formula $ax=ay$ \end_inset , entonces \begin_inset Formula $a(x-y)=0$ \end_inset , pero \begin_inset Formula $x-y\neq0$ \end_inset . \end_layout \begin_layout Standard Un \begin_inset Formula $a\in A$ \end_inset es \series bold nilpotente \series default si existe \begin_inset Formula $n\in\mathbb{N}$ \end_inset con \begin_inset Formula $a^{n}=0$ \end_inset , en cuyo caso es divisor de 0, pues tomando el menor \begin_inset Formula $n$ \end_inset con \begin_inset Formula $a^{n}=0$ \end_inset , \begin_inset Formula $a^{n-1}\neq0$ \end_inset y \begin_inset Formula $aa^{n-1}=0$ \end_inset . Llamamos \begin_inset Formula $\text{Nil}(A)$ \end_inset al conjunto de elementos de \begin_inset Formula $A$ \end_inset nilpotentes. El 1 es invertible y no nilpotente, y si \begin_inset Formula $A$ \end_inset es no trivial, el 0 es nilpotente y no unidad. \end_layout \begin_layout Standard Un anillo es \series bold reducido \series default si no tiene elementos nilpotentes distintos de 0, si y sólo si todo elemento no nulo tiene cuadrado no nulo. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Trivial. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Si hubiera \begin_inset Formula $b\in\text{Nil}(A)\setminus\{0\}$ \end_inset , sea \begin_inset Formula $n>0$ \end_inset mínimo con \begin_inset Formula $b^{n}=0$ \end_inset , entonces \begin_inset Formula $b^{n-1}\neq0$ \end_inset y \begin_inset Formula $(b^{n-1})^{2}=b^{2n-2}=b^{n}b^{n-2}=0\#$ \end_inset . \end_layout \begin_layout Standard Un anillo es un \series bold dominio \series default si no tiene divisores de cero no nulos, si y sólo si todo elemento no nulo es cancelable, y es un \series bold cuerpo \series default si todo elemento no nulo es unidad. Todo cuerpo es dominio y todo dominio es reducido. Los recíprocos no se cumplen, pues \begin_inset Formula $\mathbb{Z}$ \end_inset es un dominio que no es un cuerpo y \begin_inset Formula $\mathbb{Z}_{6}$ \end_inset es un anillo reducido que no es un dominio. \end_layout \begin_layout Standard Para \begin_inset Formula $n\geq2$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $r\in\mathbb{Z}_{n}$ \end_inset es unidad si y sólo si \begin_inset Formula $\gcd\{r,n\}=1$ \end_inset en \begin_inset Formula $\mathbb{Z}$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Si fuera \begin_inset Formula $d\coloneqq\gcd\{r,n\}>1$ \end_inset , sean \begin_inset Formula $r',n'\in\mathbb{Z}$ \end_inset con \begin_inset Formula $r=dr'$ \end_inset y \begin_inset Formula $n=dn'$ \end_inset , entonces \begin_inset Formula $n'\not\equiv0\bmod n$ \end_inset pero \begin_inset Formula $rn'=dr'n'=r'n\equiv0\bmod n$ \end_inset , con lo que \begin_inset Formula $r$ \end_inset es divisor de 0. \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Una identidad de Bézout \begin_inset Formula $ar+bn=1$ \end_inset se traduce en que \begin_inset Formula $ar\equiv1\bmod n$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $r\in\mathbb{Z}_{n}$ \end_inset es nilpotente si y sólo si todos los divisores primos de \begin_inset Formula $n$ \end_inset dividen a \begin_inset Formula $r$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Sean \begin_inset Formula $m$ \end_inset con \begin_inset Formula $r^{m}\equiv0$ \end_inset y \begin_inset Formula $p$ \end_inset un divisor primo de \begin_inset Formula $n$ \end_inset , como \begin_inset Formula $n$ \end_inset divide a \begin_inset Formula $r^{m}$ \end_inset , \begin_inset Formula $p$ \end_inset divide a \begin_inset Formula $r^{m}$ \end_inset y por tanto a \begin_inset Formula $r$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Sea \begin_inset Formula $p_{1}^{k_{1}}\cdots p_{s}^{k_{s}}$ \end_inset la descomposición prima de \begin_inset Formula $n$ \end_inset , como \begin_inset Formula $p_{1}\cdots p_{s}$ \end_inset divide a \begin_inset Formula $r$ \end_inset , si \begin_inset Formula $m\coloneqq\max\{k_{1},\dots,k_{s}\}$ \end_inset , \begin_inset Formula $n$ \end_inset divide a \begin_inset Formula $p_{1}^{m}\cdots p_{s}^{m}$ \end_inset y este a \begin_inset Formula $r$ \end_inset , luego \begin_inset Formula $n$ \end_inset divide a \begin_inset Formula $r^{m}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\mathbb{Z}_{n}$ \end_inset es un cuerpo si y sólo si es un dominio, si y sólo si \begin_inset Formula $n$ \end_inset es primo. \end_layout \begin_deeper \begin_layout Description \begin_inset Formula $1\implies2]$ \end_inset Obvio. \end_layout \begin_layout Description \begin_inset Formula $2\implies3]$ \end_inset Si \begin_inset Formula $n$ \end_inset no fuera primo, existen \begin_inset Formula $p,q\in\mathbb{Z}$ \end_inset , \begin_inset Formula $1