#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Retículos \end_layout \begin_layout Standard Un conjunto ordenado \begin_inset Formula $(A,\leq)$ \end_inset cumple la \series bold condición de cadena ascendente \series default ( \series bold ACC \series default , \emph on \lang english Ascending Chain Condition \emph default \lang spanish ) si para \begin_inset Formula $\{a_{n}\}_{n}\subseteq A$ \end_inset con cada \begin_inset Formula $a_{n}\leq a_{n+1}$ \end_inset existe \begin_inset Formula $n_{0}\in\mathbb{N}$ \end_inset tal que para \begin_inset Formula $n\geq n_{0}$ \end_inset es \begin_inset Formula $a_{n}=a_{n_{0}}$ \end_inset , si y sólo si todo \begin_inset Formula $S\subseteq A$ \end_inset no vacío tiene un elemento maximal. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Probamos el contrarrecíproco. Si \begin_inset Formula $S\subseteq A$ \end_inset no tiene elementos maximales, sea \begin_inset Formula $s_{1}\in S$ \end_inset arbitrario, como \begin_inset Formula $s_{1}$ \end_inset no es maximal, existe \begin_inset Formula $s_{2}\in S$ \end_inset son \begin_inset Formula $s_{1}n,a_{k}=0\}$ \end_inset cumplen \begin_inset Formula $I_{1}\subsetneq I_{2}\subsetneq\dots$ \end_inset y los \begin_inset Formula $J_{n}\coloneqq\{a\mid\forall k0$ \end_inset , probado esto para \begin_inset Formula $j-1$ \end_inset , \begin_inset Formula $g=a_{1,k-1}f_{1}+\dots+a_{n,k-1}f_{n}+g'X^{j-1}$ \end_inset con \begin_inset Formula $g'\in P$ \end_inset , pero como \begin_inset Formula $\epsilon(g')\in\epsilon(P)$ \end_inset , existen \begin_inset Formula $x_{i}$ \end_inset con \begin_inset Formula $\epsilon(g')\eqqcolon\sum_{i=1}^{n}x_{i}b_{i}$ \end_inset , con lo que \begin_inset Formula $h_{0}\coloneqq g'-\sum_{i=1}^{n}x_{i}f_{i}$ \end_inset está en \begin_inset Formula $P$ \end_inset y tiene término independiente 0, luego \begin_inset Formula $h_{0}=hX$ \end_inset con \begin_inset Formula $h\in P$ \end_inset ya que \begin_inset Formula $X\notin P$ \end_inset y \begin_inset Formula $P$ \end_inset es primo, y como \begin_inset Formula $g'=hX+\sum_{i=1}^{n}x_{i}f_{i}$ \end_inset , \begin_inset Formula $g=(a_{1,j-1}+x_{1}X^{j-1})f_{1}+\dots+(a_{n,j-1}+x_{n}X^{j-1})f_{n}+hX^{j}$ \end_inset , y hacemos los \begin_inset Formula $a_{ij}\coloneqq a_{i,j-1}+x_{i}X^{j-1}$ \end_inset . Con esto, para \begin_inset Formula $i\in\{1,\dots,n\}$ \end_inset definimos \begin_inset Formula $c_{i}\in A\llbracket X\rrbracket$ \end_inset de modo que \begin_inset Formula $c_{ik}\coloneqq a_{i,k+1,k}$ \end_inset , y entonces \begin_inset Formula $g=\sum_{i=1}^{n}c_{i}f_{i}$ \end_inset . En efecto, para el coeficiente de grado \begin_inset Formula $j$ \end_inset , \begin_inset Formula \begin{multline*} \left(\sum_{i=1}^{n}c_{i}f_{i}\right)_{j}=\sum_{i=1}^{n}\sum_{k=1}^{j}c_{ik}f_{i,j-k}=\sum_{i=1}^{n}\sum_{k=1}^{j}a_{i,k+1,k}f_{i,j-k}=\\ =\sum_{i=1}^{n}\sum_{k=1}^{j}a_{i,j+1,k}f_{i,j-k}=\sum_{i=1}^{n}(a_{i,j+1}f_{i})_{j}=g_{j}. \end{multline*} \end_inset \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\supseteq]$ \end_inset \end_layout \end_inset Todo \begin_inset Formula $f_{i}\in P$ \end_inset . \end_layout \end_deeper \begin_layout Description \begin_inset Formula $2\implies1]$ \end_inset \begin_inset Formula $A\cong A\llbracket X\rrbracket/(X)$ \end_inset , que es noetheriano. \end_layout \begin_layout Description \begin_inset Formula $1\iff3]$ \end_inset Por inducción en \begin_inset Formula $[1\iff2]$ \end_inset . \end_layout \begin_layout Section Anillos artinianos \end_layout \begin_layout Standard La \series bold dimensión de Krull \series default de un anillo \begin_inset Formula $A$ \end_inset es \begin_inset Formula \[ \dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}\mid\exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A\mid P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\}, \] \end_inset y se tiene \begin_inset Formula $\text{Spec}A=\text{MaxSpec}A\iff\dim A=0$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Si existen \begin_inset Formula $P,Q\trianglelefteq_{\text{p}}A$ \end_inset con \begin_inset Formula $P\subsetneq Q$ \end_inset , \begin_inset Formula $P\in\text{Spec}A\setminus\text{MaxSpec}A$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Si existe \begin_inset Formula $P\in\text{Spec}A\setminus\text{MaxSpec}A$ \end_inset , sabemos que \begin_inset Formula $P$ \end_inset está contenido (estrictamente) en un maximal \begin_inset Formula $Q$ \end_inset , que debe ser primo, luego \begin_inset Formula $P\subsetneq Q$ \end_inset y \begin_inset Formula $\dim A\geq1$ \end_inset . \end_layout \begin_layout Standard Los DIPs que no son cuerpos tienen dimensión 1, pues el único primo que no es maximal es \begin_inset Formula $(0)$ \end_inset y, para \begin_inset Formula $b$ \end_inset cancelable no invertible, \begin_inset Formula $(0)\subsetneq(b)$ \end_inset . Dado un anillo artiniano \begin_inset Formula $A$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $\dim A=0$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Dado \begin_inset Formula $P\trianglelefteq_{\text{p}}A$ \end_inset , \begin_inset Formula $A/P$ \end_inset es un dominio por ser \begin_inset Formula $P$ \end_inset primo y es artiniano por serlo \begin_inset Formula $A$ \end_inset , pero los dominios no cuerpos no son artinianos, luego \begin_inset Formula $A/P$ \end_inset es un cuerpo y por tanto \begin_inset Formula $P$ \end_inset es maximal y \begin_inset Formula $\text{Spec}A=\text{MaxSpec}A$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\text{Spec}A=\text{MaxSpec}A$ \end_inset es finito. \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $\Omega\coloneqq\{\bigcap{\cal M}\}_{{\cal M}\subseteq\text{MaxSpec}A}\neq\emptyset$ \end_inset , pues \begin_inset Formula $\emptyset\neq\text{MaxSpec}A\subseteq\Omega$ \end_inset , con lo que tiene un minimal \begin_inset Formula $I\coloneqq M_{1}\cap\dots\cap M_{k}\in\Omega$ \end_inset con los \begin_inset Formula $M_{i}\trianglelefteq_{\text{m}}A$ \end_inset . Para \begin_inset Formula $M\trianglelefteq_{\text{m}}A$ \end_inset , \begin_inset Formula $M\cap I=M\cap M_{1}\cap\dots\cap M_{k}\in\Omega$ \end_inset y por tanto \begin_inset Formula $M\cap I\subseteq I$ \end_inset , con lo que \begin_inset Formula $I\subseteq M$ \end_inset , pero \begin_inset Formula $M_{1}\cdots M_{k}\subseteq M_{1}\cap\dots\cap M_{k}=I\subseteq M$ \end_inset y, como \begin_inset Formula $M$ \end_inset es primo, algún \begin_inset Formula $M_{i}\subseteq M$ \end_inset , de modo que \begin_inset Formula $M_{i}=M$ \end_inset por ser \begin_inset Formula $M$ \end_inset maximal y \begin_inset Formula $\text{MaxSpec}(A)=\{M_{1},\dots,M_{k}\}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\text{Jac}(A)=\text{Nil}(A)$ \end_inset es nilpotente. \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $J\coloneqq\text{Jac}(A)=\bigcap\text{MaxSpec}(A)=\bigcap\text{Spec}(A)=\text{Nil}(A)$ \end_inset . Como \begin_inset Formula $A$ \end_inset es artiniano, la cadena \begin_inset Formula $J\supseteq J^{2}\supseteq J^{3}\supseteq\dots$ \end_inset se estabiliza en un cierto \begin_inset Formula $I=J^{n}$ \end_inset , y queremos ver que \begin_inset Formula $I=0$ \end_inset . Si no lo fuera, \begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A\mid KI\neq0\}\neq\emptyset$ \end_inset , pues \begin_inset Formula $A\in\Omega$ \end_inset , con lo que tiene un minimal \begin_inset Formula $K$ \end_inset . Como \begin_inset Formula $KI\neq0$ \end_inset , existe \begin_inset Formula $x\in K$ \end_inset con \begin_inset Formula $xI=(x)I\neq0$ \end_inset , luego \begin_inset Formula $(x)\in\Omega$ \end_inset y, como \begin_inset Formula $(x)\subseteq K$ \end_inset , \begin_inset Formula $K=(x)$ \end_inset . Ahora bien, \begin_inset Formula $I^{2}=J^{2n}=J^{n}=I$ \end_inset , luego \begin_inset Formula $0\neq xI=xI^{2}=(xI)I$ \end_inset , con lo que \begin_inset Formula $xI\in\Omega$ \end_inset y está contenido en \begin_inset Formula $(x)$ \end_inset y por tanto \begin_inset Formula $xI=(x)$ \end_inset . En particular \begin_inset Formula $x\in xI$ \end_inset , luego existe \begin_inset Formula $y\in I$ \end_inset con \begin_inset Formula $x=xy$ \end_inset , y por inducción \begin_inset Formula $x=xy^{n}$ \end_inset para todo \begin_inset Formula $n\in\mathbb{N}$ \end_inset , pues si \begin_inset Formula $x=xy^{n-1}$ \end_inset entonces \begin_inset Formula $x=(xy)y^{n-1}=xy^{n}$ \end_inset . Ahora bien, \begin_inset Formula $y\in I\subseteq J=\text{Nil}(A)$ \end_inset , luego existe \begin_inset Formula $n$ \end_inset con \begin_inset Formula $y^{n}=0$ \end_inset y por tanto \begin_inset Formula $x=xy^{n}=0$ \end_inset , pero \begin_inset Formula $xI\neq0\#$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate 0 es producto finito de ideales maximales. \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $\text{MaxSpec}(A)$ \end_inset es finito, digamos \begin_inset Formula $\text{MaxSpec}(A)=\{M_{1},\dots,M_{r}\}$ \end_inset , y entonces \begin_inset Formula $\text{Jac}(A)=M_{1}\cap\dots\cap M_{r}=M_{1}\cdots M_{r}$ \end_inset por ser los \begin_inset Formula $M_{i}$ \end_inset comaximales dos a dos, pero existe \begin_inset Formula $n\in\mathbb{N}$ \end_inset con \begin_inset Formula $\text{Jac}(A)^{n}=0$ \end_inset , luego \begin_inset Formula $0=M_{1}^{n}\cdots M_{r}^{n}$ \end_inset . \end_layout \end_deeper \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{exinfo} \end_layout \end_inset Dado un anillo artiniano \begin_inset Formula $A$ \end_inset , sean \begin_inset Formula $\text{Spec}(A)=\{M_{1},\dots,M_{k}\}$ \end_inset y \begin_inset Formula $n\in\mathbb{N}$ \end_inset con \begin_inset Formula $\text{Jac}(A)^{n}=0$ \end_inset , \begin_inset Formula $A\cong\frac{A}{M_{1}^{n}}\times\dots\times\frac{A}{M_{k}^{n}}$ \end_inset , con cada \begin_inset Formula $\frac{A}{M_{i}^{k}}$ \end_inset local y artiniano. \begin_inset ERT status open \begin_layout Plain Layout \backslash end{exinfo} \end_layout \end_inset \end_layout \end_body \end_document