#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style swiss \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Determinante de una matriz. Propiedades \end_layout \begin_layout Standard Una aplicación \begin_inset Formula $f:U_{1}\times\dots\times U_{n}\rightarrow V$ \end_inset es una \series bold aplicación multilineal \series default si es lineal en cada una de las \begin_inset Formula $n$ \end_inset variables, es decir, si \begin_inset Formula \[ f(u_{1},\dots,\alpha u_{i}+\beta u_{i}^{\prime},\dots,u_{n})=\alpha f(u_{1},\dots,u_{i},\dots,u_{n})+\beta f(u_{1},\dots,u_{i}^{\prime},\dots,u_{n}) \] \end_inset Una aplicación multilineal \begin_inset Formula $f:U^{n}\rightarrow V$ \end_inset se llama \series bold aplicación \begin_inset Formula $n$ \end_inset -lineal \series default . Si además \begin_inset Formula $V=K$ \end_inset es una \series bold forma \begin_inset Formula $n$ \end_inset -lineal \series default . Una forma \begin_inset Formula $n$ \end_inset -lineal \begin_inset Formula $f:U^{n}\rightarrow K$ \end_inset es \series bold alternada \series default si se anula en cada \begin_inset Formula $n$ \end_inset -upla con dos componentes iguales, es decir, tal que \begin_inset Formula $f(u_{1},\dots,u_{k},\dots,u_{l},\dots,u_{n})=0$ \end_inset cuando \begin_inset Formula $u_{k}=u_{l}$ \end_inset (con \begin_inset Formula $k\neq l$ \end_inset ). \end_layout \begin_layout Standard Una \series bold aplicación determinante \series default \begin_inset Formula $\det:M_{n}(K)\rightarrow K$ \end_inset es una forma \begin_inset Formula $n$ \end_inset -lineal alternada que a cada matriz cuadrada \begin_inset Formula $A$ \end_inset le asigna un escalar, llamado \series bold determinante \series default de \begin_inset Formula $A$ \end_inset , que denotamos \begin_inset Formula $\det(A)$ \end_inset , \begin_inset Formula $|A|$ \end_inset o \begin_inset Formula $\det(A_{1},\dots,A_{n})$ \end_inset (donde \begin_inset Formula $A_{i}$ \end_inset son las columnas de \begin_inset Formula $A$ \end_inset ), tal que \begin_inset Formula $|I_{n}|=1$ \end_inset . Algunas aplicaciones determinantes son: \end_layout \begin_layout Enumerate La aplicación \begin_inset Formula $||:M_{2}(K)\rightarrow K$ \end_inset dada por \begin_inset Formula \[ \left|\begin{array}{cc} a_{11} & a_{12}\\ a_{21} & a_{22} \end{array}\right|=a_{11}a_{22}-a_{12}a_{21} \] \end_inset \end_layout \begin_layout Enumerate La \series bold regla de Sarrus \series default , aplicación \begin_inset Formula $||:M_{3}(K)\rightarrow K$ \end_inset dada por \begin_inset Formula \[ \left|\begin{array}{ccc} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{array}\right|=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33} \] \end_inset \end_layout \begin_layout Standard Las aplicaciones determinantes verifican que: \end_layout \begin_layout Enumerate \begin_inset Formula \[ \left|\begin{array}{cccc} a_{1} & 0 & \cdots & 0\\ 0 & a_{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & a_{n} \end{array}\right|=a_{1}a_{2}\cdots a_{n} \] \end_inset Si \begin_inset Formula $\{e_{1},\dots,e_{n}\}$ \end_inset es la base canónica de \begin_inset Formula $K^{n}$ \end_inset , \begin_inset Formula \[ \left|\begin{array}{cccc} a_{1} & 0 & \cdots & 0\\ 0 & a_{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & a_{n} \end{array}\right|=\det(a_{1}e_{1},\dots,a_{n}e_{n})=a_{1}\cdots a_{n}\det(e_{1},\dots,e_{n})=a_{1}\cdots a_{n} \] \end_inset \end_layout \begin_layout Enumerate Si \begin_inset Formula $A$ \end_inset tiene una columna nula entonces \begin_inset Formula $\det(A)=0$ \end_inset . \begin_inset Newline newline \end_inset Si \begin_inset Formula $A_{i}=0$ \end_inset , entonces \begin_inset Formula \[ \begin{array}{c} \det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n})=\det(A_{1},\dots,A_{i-1},0+0,A_{i+1},\dots,A_{n})=\\ =\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n})+\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n}) \end{array} \] \end_inset luego \begin_inset Formula $\det A=0$ \end_inset . \end_layout \begin_layout Enumerate Al intercambiar dos columnas, el determinante cambia de signo. \begin_inset Formula \[ \begin{array}{c} 0=\det(A_{1},\dots,A_{i}+A_{j},\dots,A_{i}+A_{j},\dots,A_{n})=\\ =\det(A_{1},\dots,A_{i},\dots,A_{i},\dots,A_{n})+\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\\ +\det(A_{1},\dots,A_{j},\dots,A_{i},\dots,A_{n})+\det(A_{1},\dots,A_{j},\dots,A_{j},\dots,A_{n})=\\ =\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\det(A_{1},\dots,A_{j},\dots,A_{i},\dots,A_{n}) \end{array} \] \end_inset \end_layout \begin_layout Enumerate Si a una columna se le añade otra multiplicada por un escalar, el determinante no varía. \begin_inset Newline newline \end_inset \begin_inset Formula \[ \begin{array}{c} \det(A_{1},\dots,A_{i}+\alpha A_{j},\dots,A_{j},\dots,A_{n})=\\ =\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\alpha\det(A_{1},\dots,A_{j},\dots,A_{j},\dots,A_{n})=\\ =\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n}) \end{array} \] \end_inset \end_layout \begin_layout Enumerate Si las columnas de una matriz cuadrada son linealmente dependientes, su determinante es 0. Por tanto una matriz no invertible tiene determinante 0. \begin_inset Newline newline \end_inset Habrá una columna que será combinación lineal del resto: \begin_inset Formula $A_{k}=\sum_{j\neq k}\alpha_{j}A_{j}$ \end_inset . Así, \begin_inset Formula \[ \begin{array}{c} \det(A_{1},\dots,A_{k},\dots,A_{n})=\det(A_{1},\dots,\sum_{j\neq k}\alpha_{j}A_{j},\dots,A_{n})=\\ =\sum_{j\neq k}\alpha_{j}\det(A_{1},\dots,A_{j},\dots,A_{n})=0 \end{array} \] \end_inset Ya que cada matriz del último sumatorio tiene dos columnas iguales. \end_layout \begin_layout Standard De aquí podemos deducir que \begin_inset Formula $|E_{n}(i,j)|=-1$ \end_inset , \begin_inset Formula $|E_{n}(\alpha[i])|=\alpha$ \end_inset y \begin_inset Formula $|E_{n}([i]+\alpha[j])|=1$ \end_inset , y que si \begin_inset Formula $A,E\in M_{n}(K)$ \end_inset , siendo \begin_inset Formula $E$ \end_inset una matriz elemental, entonces \begin_inset Formula $|AE|=|A||E|$ \end_inset . Se deducen los siguientes teoremas: \end_layout \begin_layout Enumerate Una matriz cuadrada \begin_inset Formula $A$ \end_inset es invertible si y sólo si \begin_inset Formula $|A|\neq0$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Toda matriz invertible es producto de matrices elementales, y por lo anterior, \begin_inset Formula $|A|=|I_{n}E_{1}\cdots E_{k}|=|I_{n}||E_{1}|\cdots|E_{k}|=|E_{1}|\cdots|E_{k}|$ \end_inset . Como ninguno de los factores es nulo, se tiene que \begin_inset Formula $|A|\neq0$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Inmediato de la última propiedad. \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $A,B\in M_{n}(K)$ \end_inset , entonces \begin_inset Formula $|AB|=|A||B|$ \end_inset . \begin_inset Newline newline \end_inset Si alguna de las dos no es invertible, su producto tampoco (pues si lo fuera, \begin_inset Formula $A$ \end_inset y \begin_inset Formula $B$ \end_inset serían invertibles). En tal caso, \begin_inset Formula $|AB|=0=|A||B|$ \end_inset . Si son ambas invertibles, existen matrices elementales \begin_inset Formula $E_{1},\dots,E_{k}$ \end_inset con \begin_inset Formula $B=E_{1}\cdots E_{k}$ \end_inset , por lo que \begin_inset Formula $|AB|=|AE_{1}\cdots E_{k}|=|A||E_{1}|\cdots|E_{k}|=|A||B|$ \end_inset . \end_layout \begin_layout Standard De aquí tenemos que \begin_inset Formula $|A^{-1}|=|A|^{-1}$ \end_inset , pues \begin_inset Formula $1=|I_{n}|=|AA^{-1}|=|A||A^{-1}|$ \end_inset . Tenemos también que la aplicación determinante es única, pues \begin_inset Formula $\det(A)=0$ \end_inset para matrices no invertibles y \begin_inset Formula $\det(A)=|E_{1}|\cdots|E_{k}|$ \end_inset para aquellas que sí lo son, y podemos entonces comprobar que esta operación está bien definida. \end_layout \begin_layout Standard \series bold Teorema: \series default \begin_inset Formula $|A^{t}|=|A|$ \end_inset . \series bold Demostración: \series default Si \begin_inset Formula $A$ \end_inset no es invertible, \begin_inset Formula $A^{t}$ \end_inset tampoco, por lo que \begin_inset Formula $|A^{t}|=0=|A|$ \end_inset . Si lo es, existen \begin_inset Formula $E_{1},\dots,E_{k}$ \end_inset con \begin_inset Formula $A=E_{1}\cdots E_{k}$ \end_inset , por lo que \begin_inset Formula $|A^{t}|=|(E_{1}\cdots E_{k})^{t}|=|E_{k}^{t}\cdots E_{1}^{t}|=|E_{k}^{t}|\cdots|E_{1}^{t}|=|E_{1}|\cdots|E_{k}|=|E_{1}\cdots E_{k}|=|A|$ \end_inset . Esto significa que todo lo relativo a determinantes que se diga para columnas también es válido para filas. \end_layout \begin_layout Standard Si \begin_inset Formula $A=(a_{ij})\in M_{n}(K)$ \end_inset e \begin_inset Formula $i,j\in\{1,\dots,n\}$ \end_inset , llamamos \series bold menor complementario \series default del elemento \begin_inset Formula $a_{ij}$ \end_inset al determinante \begin_inset Formula $|A_{ij}|$ \end_inset de la matriz \begin_inset Formula $A_{ij}\in M_{n-1}(K)$ \end_inset resultado de eliminar la fila \begin_inset Formula $i$ \end_inset y la columna \begin_inset Formula $j$ \end_inset de \begin_inset Formula $A$ \end_inset . Llamamos \series bold adjunto \series default de \begin_inset Formula $a_{ij}$ \end_inset en \begin_inset Formula $A$ \end_inset al escalar \begin_inset Formula $\Delta_{ij}\coloneqq (-1)^{i+j}|A_{ij}|$ \end_inset . \end_layout \begin_layout Standard \series bold Teorema: \series default Las aplicaciones \begin_inset Formula $||:M_{n}(K)\rightarrow K$ \end_inset definidas para \begin_inset Formula $n=1$ \end_inset como \begin_inset Formula $|(a)|=a$ \end_inset y para \begin_inset Formula $n>1$ \end_inset como \begin_inset Formula $|(a_{ij})|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}$ \end_inset son aplicaciones determinante. \series bold Demostración: \series default Para \begin_inset Formula $n=1$ \end_inset es trivial. Ahora supongamos que la aplicación determinante está definida para \begin_inset Formula $n-1$ \end_inset y probamos que se cumplen las condiciones para \begin_inset Formula $n-1$ \end_inset . \end_layout \begin_layout Enumerate Multilineal: Sea \begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{n})\in M_{n}(K)$ \end_inset y \begin_inset Formula $A^{\prime}=(a_{ij}^{\prime})=(A_{1},\dots,\alpha A_{k},\dots,A_{n})$ \end_inset . Entonces \begin_inset Formula $a_{ik}^{\prime}=\alpha a_{ik}$ \end_inset y para \begin_inset Formula $j\neq k$ \end_inset , \begin_inset Formula $a_{ij}^{\prime}=a_{ij}$ \end_inset . Si llamamos \begin_inset Formula $\Delta_{ij}$ \end_inset y \begin_inset Formula $\Delta_{ij}^{\prime}$ \end_inset a los correspondientes adjuntos, \begin_inset Formula $\Delta_{ik}^{\prime}=\Delta_{ik}$ \end_inset y para \begin_inset Formula $j\neq k$ \end_inset , \begin_inset Formula $\Delta_{ij}^{\prime}=\alpha\Delta_{ij}$ \end_inset . Así, \begin_inset Formula \[ \begin{array}{c} |A^{\prime}|=a_{11}^{\prime}\Delta_{11}^{\prime}+\dots+a_{1n}^{\prime}\Delta_{1n}^{\prime}=\\ =a_{11}\alpha\Delta_{11}+\dots+a_{1(k-1)}\alpha\Delta_{1(k-1)}+\alpha a_{1k}\Delta_{ik}+a_{1(k+1)}\alpha\Delta_{i(k+1)}+\dots+a_{1n}\alpha\Delta_{in}=\\ =\alpha(a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n})=\alpha|A| \end{array} \] \end_inset Del mismo modo, sea \begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{k}^{\prime}+A_{k}^{\prime\prime},\dots,A_{n})$ \end_inset y sean \begin_inset Formula $A^{\prime}=(a_{ij}^{\prime})=(A_{1},\dots,A_{k}^{\prime},\dots,A_{n})$ \end_inset y \begin_inset Formula $A^{\prime\prime}=(a_{ij}^{\prime\prime})=(A_{1},\dots,A_{k}^{\prime\prime},\dots,A_{n})$ \end_inset . Entonces \begin_inset Formula $a_{ik}=a_{ik}^{\prime}+a_{ik}^{\prime\prime}$ \end_inset y si \begin_inset Formula $j\neq k$ \end_inset , \begin_inset Formula $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ \end_inset . Del mismo modo, \begin_inset Formula $\Delta_{ik}=\Delta_{ik}^{\prime}=\Delta_{ik}^{\prime\prime}$ \end_inset y si \begin_inset Formula $j\neq k$ \end_inset , \begin_inset Formula $\Delta_{ij}=\Delta_{ij}^{\prime}+\Delta_{ij}^{\prime\prime}$ \end_inset , por lo que \begin_inset Formula \[ \begin{array}{c} |A|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}=\\ =a_{11}(\Delta_{11}^{\prime}+\Delta_{11}^{\prime\prime})+\dots+a_{1(k-1)}(\Delta_{1(k-1)}^{\prime}+\Delta_{1(k-1)}^{\prime\prime})+(a_{1k}^{\prime}+a_{1k}^{\prime\prime})\Delta_{1k}+\\ +a_{1(k+1)}(\Delta_{1(k+1)}^{\prime}+\Delta_{1(k+1)}^{\prime\prime})+\dots+a_{1n}(\Delta_{1n}^{\prime}+\Delta_{1n}^{\prime\prime})=\\ =a_{11}^{\prime}\Delta_{11}^{\prime}+\dots+a_{1n}\Delta_{1n}^{\prime}+a_{11}^{\prime\prime}\Delta_{11}^{\prime\prime}+\dots+a_{1n}\Delta_{1n}^{\prime\prime}=|A^{\prime}|+|A^{\prime\prime}| \end{array} \] \end_inset \end_layout \begin_layout Enumerate Alternada: Sea \begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{n})\in M_{n}(K)$ \end_inset . Si para \begin_inset Formula $r