#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Matrices \end_layout \begin_layout Standard \begin_inset Note Comment status open \begin_layout Plain Layout Una \series bold matriz \series default de tamaño \begin_inset Formula $m\times n$ \end_inset , o de \begin_inset Formula $m$ \end_inset filas y \begin_inset Formula $n$ \end_inset columnas, sobre un anillo \begin_inset Formula $A$ \end_inset es una disposición de elementos de \begin_inset Formula $A$ \end_inset ordenados por un índice de 1 a \begin_inset Formula $m$ \end_inset y otro de 1 a \begin_inset Formula $n$ \end_inset , que se representa como \begin_inset Formula \[ \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n}\\ \vdots & & \vdots\\ a_{m1} & \cdots & a_{mn} \end{array}\right). \] \end_inset Llamamos \begin_inset Formula ${\cal M}_{m\times n}(A)$ \end_inset o \begin_inset Formula ${\cal M}_{mn}(A)$ \end_inset al conjunto de las matrices \begin_inset Formula $m\times n$ \end_inset sobre el anillo \begin_inset Formula $A$ \end_inset , o \begin_inset Formula ${\cal M}_{n}(A)\coloneqq {\cal M}_{nn}(A)$ \end_inset , pudiendo omitir \begin_inset Formula $(A)$ \end_inset si el anillo está claro. Una matriz es \series bold fila \series default si solo tiene una fila o \series bold columna \series default si solo tiene una columna, y podemos identificar \begin_inset Formula ${\cal M}_{1n}(A)$ \end_inset o \begin_inset Formula ${\cal M}_{n1}(A)$ \end_inset con \begin_inset Formula $A^{n}$ \end_inset . \end_layout \begin_layout Plain Layout Dadas \begin_inset Formula $X,Y\in{\cal M}_{m\times n}(A)$ \end_inset , llamamos \begin_inset Formula $X+Y\coloneqq (X_{ij}+Y_{ij})_{1\leq i\leq m}^{1\leq j\leq n}$ \end_inset , y dadas \begin_inset Formula $X\in{\cal M}_{m\times n}(A)$ \end_inset e \begin_inset Formula $Y\in{\cal M}_{n\times p}(A)$ \end_inset , llamamos \begin_inset Formula $XY\coloneqq (\sum_{k=1}^{n}X_{ik}Y_{kj})_{1\leq i\leq m}^{1\leq j\leq p}$ \end_inset . Con esto, \begin_inset Formula ${\cal M}_{n}(A)$ \end_inset es un anillo con elemento nulo \begin_inset Formula $(0)_{ij}$ \end_inset y elemento unidad la \series bold matriz identidad \series default , \begin_inset Formula $(\delta_{ij})_{ij}$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Standard Dada \begin_inset Formula $M\in{\cal M}_{m\times n}(\mathbb{C})$ \end_inset , llamamos \series bold matriz adjunta \series default de \begin_inset Formula $M$ \end_inset a \begin_inset Formula $M^{*}\coloneqq (\overline{M_{ji}})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$ \end_inset y \series bold matriz traspuesta \series default de \begin_inset Formula $M$ \end_inset a \begin_inset Formula $M^{t}\coloneqq (M_{ji})_{ij}\in{\cal M}_{n\times m}(\mathbb{C})$ \end_inset , que coincide con la adjunta cuando los coeficientes son reales, y se tiene \begin_inset Formula $(AB)^{*}=B^{*}A^{*}$ \end_inset y \begin_inset Formula $A^{**}=A$ \end_inset . \end_layout \begin_layout Standard Llamamos \series bold traza \series default de una matriz \begin_inset Formula $A\in{\cal M}_{n}$ \end_inset a \begin_inset Formula \[ \text{tr}A:=\sum_{k=1}^{n}A_{kk}. \] \end_inset El \series bold determinante \series default es la única aplicación \begin_inset Formula $\det:{\cal M}_{n}(\mathbb{K})\to\mathbb{K}$ \end_inset multilineal (lineal en cada fila o columna) y alternada (que cambia de signo al permutar dos filas o columnas) que le asocia 1 a la identidad, y cumple \begin_inset Formula $\det(AB)=\det(A)\det(B)$ \end_inset . \end_layout \begin_layout Standard Sean \begin_inset Formula $A\in{\cal M}_{n}(\mathbb{K})$ \end_inset , \begin_inset Formula $\lambda\in\mathbb{K}$ \end_inset y \begin_inset Formula $p\in\mathbb{K}^{n}\setminus0$ \end_inset , si \begin_inset Formula $Ap=\lambda p$ \end_inset , \begin_inset Formula $\lambda$ \end_inset es un \series bold valor propio \series default y \begin_inset Formula $p$ \end_inset es un \series bold vector propio \series default de \begin_inset Formula $A$ \end_inset . Los valores propios de \begin_inset Formula $A$ \end_inset son los ceros de su \series bold polinomio característico \series default , \begin_inset Formula $p_{A}(\lambda)\coloneqq \det(A-\lambda I)$ \end_inset . Si estos son \begin_inset Formula $\lambda_{1},\dots,\lambda_{n}$ \end_inset , el \series bold espectro \series default de \begin_inset Formula $A$ \end_inset es \begin_inset Formula $\sigma(A)\coloneqq \{\lambda_{1},\dots,\lambda_{n}\}$ \end_inset y su \series bold radio espectral \series default es \begin_inset Formula $\rho(A)\coloneqq \max\{|\lambda_{1}|,\dots,|\lambda_{n}|\}$ \end_inset . \end_layout \begin_layout Section Sistemas de ecuaciones \end_layout \begin_layout Standard Un \series bold sistema \series default de \begin_inset Formula $m$ \end_inset ecuaciones lineales con \begin_inset Formula $n$ \end_inset incógnitas es uno de la forma \begin_inset Formula \[ \left\{ \begin{aligned}a_{11}x_{1}+\dots+a_{1n}x_{n} & =b_{1},\\ & \vdots\\ a_{m1}x_{1}+\dots+a_{mn}x_{n} & =b_{m}. \end{aligned} \right. \] \end_inset Llamamos \series bold coeficientes \series default a los escalares \begin_inset Formula $a_{ij}$ \end_inset , \series bold términos independientes \series default a los escalares \begin_inset Formula $b_{i}$ \end_inset y \series bold soluciones \series default del sistema a los vectores \begin_inset Formula $(x_{1},\dots,x_{n})$ \end_inset que cumplen todas las igualdades. Un sistema es \series bold compatible \series default si tiene soluciones, en cuyo caso es \series bold determinado \series default si solo tiene una o \series bold indeterminado \series default si tiene más, y en otro caso es \series bold incompatible \series default . Es \series bold homogéneo \series default si todos los términos independientes son 0, en cuyo caso tiene al menos la \series bold solución trivial \series default 0. Dos sistemas de ecuaciones son \series bold equivalentes \series default si tienen el mismo conjunto de soluciones. \end_layout \begin_layout Standard Llamamos \series bold matriz de coeficientes \series default a la matriz \begin_inset Formula $m\times n$ \end_inset \begin_inset Formula $A\coloneqq (a_{ij})_{ij}$ \end_inset , \series bold columna de términos independientes \series default a la matriz columna \begin_inset Formula $b\coloneqq (b_{i})_{ij}$ \end_inset y \series bold matriz ampliada \series default a \begin_inset Formula $\left(\begin{array}{c|c} A & b\end{array}\right)$ \end_inset . Entonces podemos representar el sistema como \begin_inset Formula $Ax=b$ \end_inset . Si \begin_inset Formula $A$ \end_inset es invertible, el sistema es compatible determinado, pues \begin_inset Formula $x=A^{-1}Ax=A^{-1}b$ \end_inset . \end_layout \begin_layout Section Aplicaciones lineales \end_layout \begin_layout Standard Una \series bold base \series default de un \begin_inset Formula $\mathbb{K}$ \end_inset -espacio vectorial \begin_inset Formula $E$ \end_inset de dimensión finita es una tupla \begin_inset Formula $(v_{1},\dots,v_{n})$ \end_inset de vectores linealmente independientes de \begin_inset Formula $E$ \end_inset tal que todo \begin_inset Formula $x\in E$ \end_inset se puede escribir como \begin_inset Formula \[ \sum_{k=1}^{n}x_{k}v_{k} \] \end_inset con \begin_inset Formula $x_{1},\dots,x_{n}\in\mathbb{K}$ \end_inset . Esto nos permite identificar los vectores \begin_inset Formula $x\in E$ \end_inset con sus coordenadas \begin_inset Formula $(x_{1},\dots,x_{n})\in\mathbb{K}^{n}$ \end_inset , y con la correspondiente matriz columna. \end_layout \begin_layout Standard Un \series bold producto escalar \series default en un \begin_inset Formula $\mathbb{R}$ \end_inset -espacio vectorial \begin_inset Formula $E$ \end_inset es una función \begin_inset Formula $\langle\cdot,\cdot\rangle:E\times E\to\mathbb{R}$ \end_inset bilineal simétrica tal que \begin_inset Formula $\forall f\in E\setminus0,\langle f,f\rangle>0$ \end_inset . \end_layout \begin_layout Standard Llamamos \series bold producto escalar euclídeo \series default en \begin_inset Formula $\mathbb{R}^{n}$ \end_inset a \begin_inset Formula \[ \langle x,y\rangle:=\sum_{k=1}^{n}x_{k}y_{k}=x^{t}y=y^{t}x, \] \end_inset \series bold producto escalar hermitiano \series default en \begin_inset Formula $\mathbb{C}^{n}$ \end_inset a \begin_inset Formula \[ \langle x,y\rangle:=\sum_{k=1}^{n}x_{k}\overline{y_{k}}=y^{*}x=\overline{x^{*}y}. \] \end_inset \end_layout \begin_layout Standard Sean \begin_inset Formula $M\in{\cal M}_{m\times n}(\mathbb{C})$ \end_inset , \begin_inset Formula $u\in\mathbb{C}^{n}$ \end_inset y \begin_inset Formula $v\in\mathbb{C}^{m}$ \end_inset , \begin_inset Formula $\langle Mu,v\rangle=\langle u,M^{*}v\rangle$ \end_inset , y en particular, para \begin_inset Formula $M\in{\cal M}_{m\times n}(\mathbb{R})$ \end_inset , \begin_inset Formula $u\in\mathbb{R}^{n}$ \end_inset y \begin_inset Formula $v\in\mathbb{R}^{m}$ \end_inset , \begin_inset Formula $\langle Mu,v\rangle=\langle u,M^{t}v\rangle$ \end_inset . En efecto, \begin_inset Formula $\langle Me_{i},e_{j}\rangle=\langle(M_{ki})_{k},e_{j}\rangle=M_{ji}$ \end_inset , y \begin_inset Formula $\langle e_{i},M^{*}e_{j}\rangle=\langle e_{i},((M^{*})_{kj})_{k}\rangle=\langle e_{i},(\overline{M_{jk}})_{k}\rangle=\overline{\overline{M_{ji}}}=M_{ji}$ \end_inset . \end_layout \begin_layout Standard Dos vectores \begin_inset Formula $x,y\in\mathbb{C}^{n}$ \end_inset son \series bold ortogonales \series default si \begin_inset Formula $\langle x,y\rangle=0$ \end_inset . \end_layout \begin_layout Section Matrices especiales \end_layout \begin_layout Standard Una matriz \begin_inset Formula $A$ \end_inset es \series bold cuadrada \series default si tiene el mismo número de filas que de columnas, en cuyo caso es \series bold diagonal \series default si \begin_inset Formula $\forall i\neq j,A_{ij}=0$ \end_inset , \series bold triangular superior \series default si \begin_inset Formula $\forall i>j,A_{ij}=0$ \end_inset y \series bold triangular inferior \series default si \begin_inset Formula $\forall i1$ \end_inset y supongamos esto probado para \begin_inset Formula $n-1$ \end_inset . Si \begin_inset Formula $f:\mathbb{C}^{n}\to\mathbb{C}^{n}$ \end_inset es la aplicación lineal asociada a \begin_inset Formula $f$ \end_inset , por el teorema fundamental del álgebra, el polinomio característico de \begin_inset Formula $A$ \end_inset tendrá raíz y por tanto \begin_inset Formula $f$ \end_inset tendrá un valor propio \begin_inset Formula $\lambda\in\mathbb{C}$ \end_inset con vector propio asociado \begin_inset Formula $v_{1}$ \end_inset . Sean \begin_inset Formula $p_{2},\dots,p_{n}$ \end_inset tales que \begin_inset Formula $(v_{1},p_{2},\dots,p_{n})$ \end_inset es base de \begin_inset Formula $\mathbb{C}^{n}$ \end_inset y \begin_inset Formula $W\coloneqq \text{span}(p_{2},\dots,p_{n})$ \end_inset , existen \begin_inset Formula $g:W\to W$ \end_inset y \begin_inset Formula $\alpha_{2},\dots,\alpha_{n}\in\mathbb{C}$ \end_inset tales que, para \begin_inset Formula $2\leq k\leq n$ \end_inset , \begin_inset Formula $f(p_{k})=\alpha_{k}v_{1}+g(p_{k})$ \end_inset . \end_layout \begin_layout Standard Por la hipótesis de inducción, existe una base \begin_inset Formula $(v_{2},\dots,v_{n})$ \end_inset de \begin_inset Formula $W$ \end_inset en la que la matriz de \begin_inset Formula $g$ \end_inset es triangular superior. Si, para \begin_inset Formula $2\leq i\leq n$ \end_inset , \begin_inset Formula $v_{i}=:\sum_{j=2}^{n}\gamma_{ij}p_{j}$ \end_inset , como \begin_inset Formula $f(v_{1})=\lambda v_{1}$ \end_inset y, para \begin_inset Formula $2\leq i\leq n$ \end_inset , \begin_inset Formula $f(v_{i})=\left(\sum_{k=2}^{n}\alpha_{k}\gamma_{ik}\right)v_{1}+g(v_{i})$ \end_inset , tenemos que la matriz \begin_inset Formula $(b_{ij})$ \end_inset de \begin_inset Formula $f$ \end_inset con la base \begin_inset Formula $(v_{1},\dots,v_{n})$ \end_inset es triangular superior. \end_layout \begin_layout Standard Por el método de Gram-Schmidt, existe una base ortonormal \begin_inset Formula $(u_{1},\dots,u_{n})$ \end_inset tal que, para \begin_inset Formula $1\leq k\leq n$ \end_inset , \begin_inset Formula $\text{span}(u_{1},\dots,u_{k})=\text{span}(v_{1},\dots,v_{k})$ \end_inset , y como \begin_inset Formula $f(v_{k})=\sum_{i=1}^{j}b_{ik}v_{i}$ \end_inset es combinación lineal de \begin_inset Formula $(v_{1},\dots,v_{k})$ \end_inset , también lo es de \begin_inset Formula $(u_{1},\dots,u_{k})$ \end_inset y \begin_inset Formula $f$ \end_inset se expresa en la base \begin_inset Formula $(u_{1},\dots,u_{n})$ \end_inset como matriz triangular. Como esta base es ortonormal respecto al producto escalar hermitiano, la matriz de paso es unitaria. \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $A$ \end_inset es normal, existe \begin_inset Formula $U\in{\cal M}_{n}$ \end_inset unitaria tal que \begin_inset Formula $U^{-1}AU$ \end_inset es diagonal. \end_layout \begin_deeper \begin_layout Standard Existe \begin_inset Formula $U$ \end_inset unitaria tal que \begin_inset Formula $T\coloneqq U^{-1}AU=U^{*}AU$ \end_inset es triangular superior, pero \begin_inset Formula $T^{*}T=(U^{*}AU)^{*}U^{*}AU=U^{*}A^{*}U^{**}U^{*}AU=U^{*}A^{*}UU^{*}AU=U^{*}A^{*}AU$ \end_inset y \begin_inset Formula $TT^{*}=U^{*}AU(U^{*}AU)^{*}=U^{*}AUU^{*}A^{*}U=U^{*}AA^{*}U=U^{*}A^{*}AU=T^{*}T$ \end_inset , luego \begin_inset Formula $T$ \end_inset es normal. Entonces, para \begin_inset Formula $ii$ \end_inset y \begin_inset Formula $A$ \end_inset es triangular superior. Por tanto \begin_inset Formula $T$ \end_inset es diagonal. \end_layout \end_deeper \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{AAlG} \end_layout \end_inset \end_layout \begin_layout Standard Toda matriz simétrica real \begin_inset Formula $A\in{\cal M}_{m}(\mathbb{R})$ \end_inset admite una matriz ortogonal \begin_inset Formula $P$ \end_inset tal que \begin_inset Formula $P^{-1}AP=P^{t}AP$ \end_inset es diagonal. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard Dada \begin_inset Formula $A\in{\cal M}_{n}$ \end_inset , los valores propios de \begin_inset Formula $A^{*}A$ \end_inset son no negativos, pues si \begin_inset Formula $p\neq0$ \end_inset , \begin_inset Formula $A^{*}Ap=\lambda p\implies\lambda\Vert p\Vert^{2}=\lambda\langle p,p\rangle=\lambda p^{*}p=p^{*}\lambda p=p^{*}A^{*}Ap=(Ap)^{*}(Ap)=\Vert Ap\Vert^{2}\geq0\implies\lambda\geq0$ \end_inset . Llamamos \series bold valores singulares \series default de \begin_inset Formula $A$ \end_inset a las raíces cuadradas de estos valores propios. Entonces: \end_layout \begin_layout Enumerate Para \begin_inset Formula $A\in\mathbb{C}^{n}$ \end_inset con valores singulares \begin_inset Formula $\mu_{1},\dots,\mu_{n}$ \end_inset , existen \begin_inset Formula $U$ \end_inset y \begin_inset Formula $V$ \end_inset unitarias tales que \begin_inset Formula $U^{*}AV=\text{diag}(\mu_{1},\dots,\mu_{n})$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $A^{*}A$ \end_inset es normal, pues \begin_inset Formula $(A^{*}A)^{*}=A^{*}A$ \end_inset y por tanto \begin_inset Formula $(A^{*}A)(A^{*}A)^{*}=(A^{*}A)^{*}(A^{*}A)$ \end_inset . Por el teorema anterior, existe \begin_inset Formula $V$ \end_inset unitaria tal que \begin_inset Formula $V^{*}A^{*}AV=\text{diag}(\mu_{1}^{2},\dots,\mu_{n}^{2})$ \end_inset , donde los \begin_inset Formula $\mu_{i}$ \end_inset son los valores singulares de \begin_inset Formula $A$ \end_inset . Si \begin_inset Formula $f_{1},\dots,f_{n}$ \end_inset son las columnas de \begin_inset Formula $AV$ \end_inset , entonces \begin_inset Formula $f_{i}^{*}f_{j}=\mu_{i}^{2}\delta_{ij}$ \end_inset para \begin_inset Formula $i,j\in\{1,\dots,n\}$ \end_inset . Podemos suponer que los valores singulares nulos son \begin_inset Formula $\mu_{1},\dots,\mu_{r}$ \end_inset , luego \begin_inset Formula $f_{1},\dots,f_{r}=0$ \end_inset , y haciendo \begin_inset Formula $u_{j}\coloneqq \frac{f_{j}}{\mu_{j}}$ \end_inset para \begin_inset Formula $j\in\{r+1,\dots,n\}$ \end_inset , queda \begin_inset Formula $u_{i}^{*}u_{j}=\delta_{ij}$ \end_inset para \begin_inset Formula $i,j\in\{r+1,\dots,n\}$ \end_inset , es decir, \begin_inset Formula $\{u_{r+1},\dots,u_{n}\}$ \end_inset son ortogonales. Completando con vectores ortogonales \begin_inset Formula $u_{1},\dots,u_{r}$ \end_inset se obtiene una base ortonormal de \begin_inset Formula $\mathbb{C}^{n}$ \end_inset , y llamando \begin_inset Formula $U$ \end_inset a la matriz con columnas \begin_inset Formula $(u_{1},\dots,u_{n})$ \end_inset , queda que \begin_inset Formula \[ (U^{*}AV)_{ij}=u_{i}^{*}f_{j}=\begin{cases} 0 & \text{si }1\leq j\leq r\\ \mu_{j}u_{i}^{*}u_{j} & \text{si }r+1\leq j\leq n \end{cases}=\mu_{i}\delta_{ij}. \] \end_inset \end_layout \end_deeper \begin_layout Enumerate Para \begin_inset Formula $A\in\mathbb{R}^{n}$ \end_inset con valores singulares \begin_inset Formula $\mu_{1},\dots,\mu_{n}$ \end_inset , existen \begin_inset Formula $U$ \end_inset y \begin_inset Formula $V$ \end_inset ortogonales tales que \begin_inset Formula $U^{t}AV=\text{diag}(\mu_{1},\dots,\mu_{n})$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Análogo, viendo que \begin_inset Formula $A^{t}A$ \end_inset es simétrica y cambiando adjuntas por traspuestas y unitarias por ortogonales. \end_layout \end_deeper \begin_layout Section Cocientes de Rayleigh \end_layout \begin_layout Standard El \series bold cociente de Rayleigh \series default de una matriz \begin_inset Formula $A\in{\cal M}_{n}(\mathbb{C})$ \end_inset es una aplicación \begin_inset Formula $R_{A}:\mathbb{C}^{n}\setminus0\to\mathbb{C}$ \end_inset dada por \begin_inset Formula \[ R_{A}(v):=\frac{\langle Av,v\rangle}{\langle v,v\rangle}=\frac{v^{*}Av}{v^{*}v}. \] \end_inset Si \begin_inset Formula $A$ \end_inset es hermitiana, este cociente toma valores reales, pues entonces \begin_inset Formula $\overline{R_{A}(v)}=\frac{\overline{\langle Av,v\rangle}}{\langle v,v\rangle}=\frac{\langle v,Av\rangle}{\langle v,v\rangle}=\frac{\langle A^{*}v,v\rangle}{\langle v,v\rangle}=\frac{\langle Av,v\rangle}{\langle v,v\rangle}=R_{A}(v)$ \end_inset . \end_layout \begin_layout Standard Sean \begin_inset Formula $A\in{\cal M}_{n}$ \end_inset hermitiana con valores propios \begin_inset Formula $\lambda_{1}\leq\dots\leq\lambda_{n}$ \end_inset , \begin_inset Formula $(p_{1},\dots,p_{n})$ \end_inset una base ortonormal ( \begin_inset Formula $(p_{i},p_{j})=\delta_{ij}$ \end_inset ) de vectores propios correspondientes ( \begin_inset Formula $Ap_{k}=\lambda_{k}p_{k}$ \end_inset ), \begin_inset Formula $E_{k}\coloneqq \text{span}\{p_{1},\dots,p_{k}\}$ \end_inset para cada \begin_inset Formula $k$ \end_inset ( \begin_inset Formula $E_{0}=\{0\}$ \end_inset ) y \begin_inset Formula ${\cal S}_{k}$ \end_inset la familia de todos los subespacios de \begin_inset Formula $\mathbb{C}^{n}$ \end_inset con dimensión \begin_inset Formula $k$ \end_inset . Entonces, para \begin_inset Formula $1\leq k\leq n$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $\lambda_{k}=R_{A}(p_{k})$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $U$ \end_inset unitaria tal que \begin_inset Formula $D\coloneqq U^{*}AU=\text{diag}(\lambda_{1},\dots,\lambda_{n})$ \end_inset , \begin_inset Formula $v\in\mathbb{C}^{n}\setminus0$ \end_inset y \begin_inset Formula $v=Uw$ \end_inset , \begin_inset Formula \[ R_{A}(v)=\frac{v^{*}Av}{v^{*}v}=\frac{w^{*}U^{*}AUw}{w^{*}U^{*}Uw}=\frac{D}{w^{*}w}=\frac{\sum_{k}\lambda_{k}|w_{k}|^{2}}{\sum_{k}|w_{k}|^{2}}. \] \end_inset Como \begin_inset Formula $w$ \end_inset es \begin_inset Formula $v$ \end_inset expresado respecto de la base \begin_inset Formula $(p_{1},\dots,p_{n})$ \end_inset , \begin_inset Formula $Up_{k}=e_{k}$ \end_inset , luego \begin_inset Formula $R_{A}(p_{k})=\frac{\lambda_{k}}{1}=\lambda_{k}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\lambda_{k}=\max_{v\in E_{k}\setminus0}R_{A}(v)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $v$ \end_inset es de la forma \begin_inset Formula $\sum_{i=1}^{k}\alpha_{i}p_{i}$ \end_inset , \begin_inset Formula $w=(\alpha_{1},\dots,\alpha_{k},0,\dots,0)$ \end_inset , y como los valores propios están ordenados, \begin_inset Formula \[ R_{A}(v)=\frac{\sum_{i=1}^{k}\lambda_{i}|\alpha_{i}|^{2}}{\sum_{i=1}^{k}|\alpha_{i}|^{2}}\leq\frac{\sum_{i=1}^{k}\lambda_{k}|\alpha_{k}|^{2}}{\sum_{i=1}^{k}|\alpha_{k}|^{2}}=\lambda_{k}=R_{A}(p_{k}). \] \end_inset \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\lambda_{k}=\min_{0\neq v\bot E_{k-1}}R_{A}(v)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard En este caso, \begin_inset Formula $v$ \end_inset es de la forma \begin_inset Formula $\sum_{i=k}^{n}\alpha_{i}p_{i}$ \end_inset , y el razonamiento es análogo al del punto anterior. \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\lambda_{k}=\min_{W\in{\cal S}_{k}}\max_{v\in W\setminus0}R_{A}(v)$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\geq]$ \end_inset \end_layout \end_inset \begin_inset Formula $\lambda_{k}=\max_{v\in E_{k}\setminus\{0\}}R_{A}(v)\overset{E_{k}\in{\cal S}_{k}}{\leq}\inf_{W\in{\cal S}_{k}}\max_{v\in W\setminus\{0\}}R_{A}(v)$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\leq]$ \end_inset \end_layout \end_inset Queremos ver que \begin_inset Formula $\forall W\in{\cal S}_{k},\lambda_{k}\leq\max_{v\in W\setminus\{0\}}R_{A}(v)$ \end_inset . Si \begin_inset Formula $E_{k-1}^{\bot}\coloneqq \{v\in V\mid v\bot E_{k-1}\}$ \end_inset , basta ver que para todo subespacio \begin_inset Formula $W$ \end_inset de dimensión \begin_inset Formula $k$ \end_inset , \begin_inset Formula $W\cap E_{k-1}^{\bot}\neq0$ \end_inset , pues entonces, para \begin_inset Formula $v\in(W\cap E_{k-1}^{\bot})\setminus0$ \end_inset , como \begin_inset Formula $0\neq v\bot E_{k-1}$ \end_inset , \begin_inset Formula $\lambda_{k}\leq\min_{0\neq v\bot E_{k-1}}R_{A}(v)$ \end_inset . Pero como \begin_inset Formula $E_{k-1}^{\bot}$ \end_inset tiene dimensión \begin_inset Formula $n-k+1$ \end_inset , por Grassmann, \begin_inset Formula $\dim(W\cap E_{k-1}^{\bot})=\dim W+\dim E_{k-1}^{\bot}-\dim(W\oplus E_{k-1}^{\bot})\leq\dim W+\dim E_{k-1}^{\bot}-\dim\mathbb{C}^{n}=k+n-k+1-n=1$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\lambda_{k}=\max_{E\in{\cal S}_{k-1}}\min_{0\neq v\bot E}R_{A}(v)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Análogo. \end_layout \end_deeper \begin_layout Section Normas matriciales \end_layout \begin_layout Standard Sea \begin_inset Formula $E$ \end_inset un espacio vectorial sobre \begin_inset Formula $\mathbb{R}$ \end_inset o \begin_inset Formula $\mathbb{C}$ \end_inset , una \series bold norma \series default sobre \begin_inset Formula $E$ \end_inset es una aplicación \begin_inset Formula $\Vert\cdot\Vert:E\to[0,+\infty)$ \end_inset tal que: \end_layout \begin_layout Enumerate \begin_inset Formula $\Vert x\Vert=0\iff x=0$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\Vert x+y\Vert\leq\Vert x\Vert+\Vert y\Vert$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\Vert ax\Vert=|a|\Vert x\Vert$ \end_inset . \end_layout \begin_layout Standard Llamamos \series bold espacio vectorial normado \series default al par \begin_inset Formula $(E,\Vert\cdot\Vert)$ \end_inset . La función \begin_inset Formula $d(x,y)=\Vert x-y\Vert$ \end_inset es una distancia en \begin_inset Formula $E$ \end_inset . Todas las normas en un espacio de dimensión finita son equivalentes, es decir, definen la misma topología. \end_layout \begin_layout Standard Si \begin_inset Formula $E$ \end_inset es un \begin_inset Formula $\mathbb{R}$ \end_inset -espacio vectorial con un producto escalar \begin_inset Formula $\langle\cdot,\cdot\rangle$ \end_inset , \begin_inset Formula $\Vert\cdot\Vert:E\to\mathbb{R}$ \end_inset dada por \begin_inset Formula $\Vert f\Vert\coloneqq \sqrt{\langle f,f\rangle}$ \end_inset define una norma en \begin_inset Formula $E$ \end_inset . Llamamos \series bold norma \begin_inset Formula $p$ \end_inset \series default de \begin_inset Formula $x\in\mathbb{C}^{n}$ \end_inset a \begin_inset Formula \[ \Vert x\Vert_{p}:=\sqrt[p]{\sum_{k=1}^{n}|x_{k}|^{p}}, \] \end_inset \series bold norma euclídea \series default a \begin_inset Formula $\Vert x\Vert_{2}=\sqrt{\langle x,x\rangle}$ \end_inset y \series bold norma infinito \series default a \begin_inset Formula \[ \Vert x\Vert_{\infty}:=\max{_{k=1}^{n}}|x_{k}|. \] \end_inset \end_layout \begin_layout Standard Una \series bold norma matricial \series default en \begin_inset Formula ${\cal M}_{n}(\mathbb{K})$ \end_inset , donde \begin_inset Formula $\mathbb{K}$ \end_inset es \begin_inset Formula $\mathbb{R}$ \end_inset o \begin_inset Formula $\mathbb{C}$ \end_inset , es una que cumple \begin_inset Formula $\forall A,B\in{\cal M}_{n}(\mathbb{K}),\Vert AB\Vert\leq\Vert A\Vert\Vert B\Vert$ \end_inset . Dada una norma \begin_inset Formula $\Vert\cdot\Vert$ \end_inset en \begin_inset Formula $\mathbb{K}^{n}$ \end_inset , llamamos \series bold norma matricial sub \begin_inset ERT status open \begin_layout Plain Layout \backslash - \end_layout \end_inset or \begin_inset ERT status open \begin_layout Plain Layout \backslash - \end_layout \end_inset di \begin_inset ERT status open \begin_layout Plain Layout \backslash - \end_layout \end_inset na \begin_inset ERT status open \begin_layout Plain Layout \backslash - \end_layout \end_inset da \series default a la norma \begin_inset Formula $\Vert\cdot\Vert$ \end_inset a la norma matricial en \begin_inset Formula ${\cal M}_{n}(\mathbb{K})$ \end_inset dada por \begin_inset Formula \[ \Vert A\Vert:=\sup_{x\in\mathbb{K}^{n}\setminus\{0\}}\frac{\Vert Ax\Vert}{\Vert x\Vert}=\sup_{\Vert x\Vert\leq1}\frac{\Vert Ax\Vert}{\Vert x\Vert}=\sup_{\Vert x\Vert=1}\Vert Ax\Vert. \] \end_inset Entonces, para \begin_inset Formula $A\in{\cal M}_{n}(\mathbb{K})$ \end_inset y \begin_inset Formula $x\in\mathbb{K}^{n}$ \end_inset , \begin_inset Formula $\Vert Ax\Vert\leq\Vert A\Vert\Vert x\Vert$ \end_inset . \end_layout \begin_layout Standard Sea \begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{C})$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $\Vert A\Vert_{1}=\max_{j}\sum_{i}|a_{ij}|$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $\sup\{\Vert Ax\Vert\mid\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}\mid\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}$ \end_inset . Sea \begin_inset Formula $j$ \end_inset tal que \begin_inset Formula $\max_{i}\sum_{k}|a_{ki}|=\sum_{k}|a_{kj}|$ \end_inset , para \begin_inset Formula $x$ \end_inset con \begin_inset Formula $\sum_{i}|x_{i}|$ \end_inset , \begin_inset Formula \[ \sum_{k,i}|a_{ki}||x_{i}|=\sum_{i}\left(|x_{i}|\sum_{k}|a_{ki}|\right)\leq\left(\sum_{i}|x_{i}|\right)\left(\sum_{k}|a_{kj}|\right)=\sum_{k}|a_{kj}|, \] \end_inset luego \begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\Vert A\Vert_{2}=\sqrt{\rho(A^{*}A)}=\Vert A^{*}\Vert_{2}$ \end_inset . En particular, \begin_inset Formula $\Vert A\Vert_{2}$ \end_inset es el mayor valor singular de \begin_inset Formula $A$ \end_inset , y si \begin_inset Formula $A$ \end_inset es unitaria o real ortogonal, \begin_inset Formula $\Vert A\Vert_{2}=1$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula \[ \Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}\;\middle|\;\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x)\;\middle|\;\Vert x\Vert_{2}=1\right\} , \] \end_inset pero si \begin_inset Formula $\lambda_{1},\dots,\lambda_{m}\geq0$ \end_inset son los valores propios de \begin_inset Formula $A^{*}A$ \end_inset y \begin_inset Formula $E_{1},\dots,E_{m}$ \end_inset son los subespacios propios asociados, \begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v)\mid v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v)\mid v\neq0\}$ \end_inset , y como \begin_inset Formula \[ R_{A^{*}A}(v)=\frac{\langle Av,v\rangle}{\langle v,v\rangle}=\left\langle A\frac{v}{\sqrt{\langle v,v\rangle}},\frac{v}{\sqrt{\langle v,v\rangle}}\right\rangle =\left\langle A\frac{v}{\Vert v\Vert_{2}},\frac{v}{\Vert v\Vert_{2}}\right\rangle , \] \end_inset queda \begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v)\mid v\neq0\}=\max\{R_{A^{*}A}(v)\mid\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\Vert A\Vert_{\infty}=\max_{i}\sum_{j}|a_{ij}|$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula \begin{align*} \Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}\mid\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}\mid\max_{k}|x_{k}|=1\}=\\ & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} . \end{align*} \end_inset Este supremo se alcanza cuando, para cada \begin_inset Formula $i$ \end_inset , \begin_inset Formula $x_{i}=1$ \end_inset si \begin_inset Formula $a_{ki}>0$ \end_inset o \begin_inset Formula $x_{i}=-1$ \end_inset si \begin_inset Formula $a_{ki}<0$ \end_inset , con lo que \begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|\mid\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$ \end_inset , luego \begin_inset Formula $\Vert A\Vert_{\infty}=\max_{k}\sum_{i}|a_{ki}|$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $A$ \end_inset es normal, \begin_inset Formula $\Vert A\Vert_{2}=\rho(A)$ \end_inset . \end_layout \begin_layout Standard La \series bold norma euclídea \series default , \begin_inset Formula $\Vert A\Vert_{E}\coloneqq \sqrt{\sum_{i,j}|a_{ij}|^{2}}$ \end_inset , es una norma matricial no subordinada a ninguna norma en \begin_inset Formula $\mathbb{K}^{n}$ \end_inset , pero es más fácil de calcular que \begin_inset Formula $\Vert\cdot\Vert_{2}$ \end_inset , y \begin_inset Formula $\Vert A\Vert_{2}\leq\Vert A\Vert_{E}\leq\sqrt{n}\Vert A\Vert_{2}$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula $A\in{\cal M}_{n}(\mathbb{K})$ \end_inset : \end_layout \begin_layout Enumerate Toda norma matricial \begin_inset Formula $\Vert\cdot\Vert$ \end_inset en \begin_inset Formula ${\cal M}_{n}(\mathbb{K})$ \end_inset cumple \begin_inset Formula $\rho(A)\leq\Vert A\Vert$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $\lambda$ \end_inset un valor propio tal que \begin_inset Formula $|\lambda|=\rho(A)$ \end_inset , \begin_inset Formula $p\neq0$ \end_inset un vector propio de \begin_inset Formula $\lambda$ \end_inset y \begin_inset Formula $q\in\mathbb{K}^{n}$ \end_inset tal que la matriz \begin_inset Formula $pq^{t}\neq0$ \end_inset . Entonces \begin_inset Formula $\rho(A)\Vert pq^{t}\Vert=\Vert\lambda pq^{t}\Vert=\Vert(Ap)q^{t}\Vert=\Vert A(pq^{t})\Vert\leq\Vert A\Vert\Vert pq^{t}\Vert$ \end_inset , y despejando, \begin_inset Formula $\rho(A)\leq\Vert A\Vert$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Para todo \begin_inset Formula $\varepsilon>0$ \end_inset existe una norma matricial subordinada \begin_inset Formula $\Vert\cdot\Vert$ \end_inset tal que \begin_inset Formula $\Vert A\Vert\leq\rho(A)+\varepsilon$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sea \begin_inset Formula $U$ \end_inset la matriz unitaria tal que \begin_inset Formula $U^{-1}AU$ \end_inset es triangular superior. Entonces la diagonal está formada por los valores propios \begin_inset Formula $\lambda_{1},\dots,\lambda_{n}$ \end_inset , no necesariamente distintos, de \begin_inset Formula $A$ \end_inset . \end_layout \begin_layout Standard Sea \begin_inset Formula $D_{\delta}\coloneqq \text{diag}(1,\delta,\dots,\delta^{n-1})$ \end_inset para \begin_inset Formula $\delta>0$ \end_inset , entonces \begin_inset Formula $(UD_{\delta})^{-1}A(UD_{\delta})=D_{\delta}^{-1}U^{-1}AUD_{\delta}=D_{\delta^{-1}}U^{-1}AUD_{\delta}$ \end_inset , pero \begin_inset Formula $(a_{ij})D_{\delta}=(\delta^{j}a_{ij})$ \end_inset y \begin_inset Formula $D_{\delta^{-1}}(a_{ij})=(\delta^{-i}a_{ij})$ \end_inset , luego si \begin_inset Formula $U^{-1}AU=(u_{ij})$ \end_inset , \begin_inset Formula $D_{\delta}^{-1}U^{-1}AUD_{\delta}=D_{\delta^{-1}}(u_{ij})D_{\delta}=D_{\delta^{-1}}(\delta^{j}u_{ij})=(\delta^{j-i}u_{ij})$ \end_inset . \end_layout \begin_layout Standard La diagonal no cambia, la matriz sigue siendo triangular superior y, para \begin_inset Formula $\delta$ \end_inset suficientemente pequeño, \begin_inset Formula $\sum_{j=i+1}^{n}|\delta^{j-i}u_{ij}|<\varepsilon$ \end_inset para cada \begin_inset Formula $i$ \end_inset . Así, \begin_inset Formula $\Vert(\delta^{j-i}u_{ij})\Vert_{\infty}=\max_{i}\sum_{j}\delta^{j-i}u_{ij}=\max_{i}(\lambda_{i}+\sum_{j=i+1}^{n}\delta^{j-i}u_{ij})\leq\rho(A)+\varepsilon$ \end_inset . Tomando la norma \begin_inset Formula $\Vert v\Vert_{*}\coloneqq \Vert(UD_{\delta})^{-1}v\Vert_{\infty}$ \end_inset , la norma subordinada a esta cumple \begin_inset Formula $\Vert A\Vert_{*}=\Vert(UD_{\delta})^{-1}A(UD_{\delta})\Vert_{\infty}\leq\rho(A)+\varepsilon$ \end_inset . \end_layout \end_deeper \begin_layout Standard De aquí que \begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert\mid\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$ \end_inset . \end_layout \begin_layout Standard Sea \begin_inset Formula $B\in{\cal M}_{n}$ \end_inset , \begin_inset Formula $\lim_{k}B^{k}=0$ \end_inset si y sólo si \begin_inset Formula $\forall v\in\mathbb{K}^{n},\lim_{k}B^{k}v=0$ \end_inset , si y sólo si \begin_inset Formula $\rho(B)<1$ \end_inset , si y sólo si existe una norma subordinada tal que \begin_inset Formula $\Vert B\Vert<1$ \end_inset . \end_layout \begin_layout Description \begin_inset Formula $[1\implies2]$ \end_inset \begin_inset Formula $0\leq\lim_{k}\Vert B^{k}v\Vert\leq\lim_{k}\Vert B^{k}\Vert\Vert v\Vert=0\Vert v\Vert=0$ \end_inset , luego \begin_inset Formula $\lim_{k}B^{k}v=0$ \end_inset . \end_layout \begin_layout Description \begin_inset Formula $[2\implies3]$ \end_inset Sea \begin_inset Formula $\lambda$ \end_inset un valor propio de \begin_inset Formula $A$ \end_inset y \begin_inset Formula $p$ \end_inset un vector propio asociado, entonces \begin_inset Formula $\lim_{k}B^{k}p=\lim_{k}\lambda^{k}p=p\lim_{k}\lambda^{k}=0$ \end_inset , luego \begin_inset Formula $|\lambda|<1$ \end_inset . \end_layout \begin_layout Description \begin_inset Formula $[3\implies4]$ \end_inset Por el teorema anterior, existe \begin_inset Formula $\Vert\cdot\Vert$ \end_inset tal que \begin_inset Formula $\Vert B\Vert<\rho(B)+(1-\rho(B))=1$ \end_inset . \end_layout \begin_layout Description \begin_inset Formula $[4\implies1]$ \end_inset Sea \begin_inset Formula $\Vert\cdot\Vert$ \end_inset esta norma, \begin_inset Formula $0\leq\lim_{k}\Vert B^{k}\Vert\leq\lim_{k}\Vert B\Vert^{k}=0$ \end_inset , luego \begin_inset Formula $\lim_{k}B^{k}=0$ \end_inset . \end_layout \begin_layout Standard Toda norma matricial cumple \begin_inset Formula $\lim_{k}\Vert B^{k}\Vert^{1/k}=\rho(B)$ \end_inset . \series bold Demostración: \series default Sabemos que \begin_inset Formula $\rho(B)\leq\Vert B\Vert$ \end_inset , y como \begin_inset Formula $\rho(B)=\rho(B^{k})^{1/k}$ \end_inset , queda \begin_inset Formula $\rho(B)\leq\Vert B^{k}\Vert^{1/k}$ \end_inset para todo \begin_inset Formula $k$ \end_inset . Fijado ahora \begin_inset Formula $\varepsilon>0$ \end_inset , sea \begin_inset Formula $B_{\varepsilon}\coloneqq \frac{B}{\rho(B)+\varepsilon}$ \end_inset , se tiene \begin_inset Formula $\rho(B_{\varepsilon})<1$ \end_inset , por lo que \begin_inset Formula $\lim_{k}B_{\varepsilon}^{k}=0$ \end_inset y existe \begin_inset Formula $k_{0}$ \end_inset tal que, para \begin_inset Formula $k\geq k_{0}$ \end_inset , \begin_inset Formula $B_{\varepsilon}^{k}\leq1$ \end_inset , pero entonces \begin_inset Formula $\Vert B_{\varepsilon}^{k}\Vert=\frac{\Vert B^{k}\Vert}{(\rho(B)+\varepsilon)^{k}}\leq1$ \end_inset y \begin_inset Formula $\Vert B^{k}\Vert^{1/k}\leq\rho(B)+\varepsilon$ \end_inset . \end_layout \begin_layout Section Análisis del error \end_layout \begin_layout Standard Sean \begin_inset Formula $A\in{\cal M}_{m\times n}$ \end_inset invertible, \begin_inset Formula $b\in\mathbb{K}^{n}\setminus0$ \end_inset y \begin_inset Formula $\Vert\cdot\Vert$ \end_inset una norma subordinada: \end_layout \begin_layout Enumerate Considerando los sistemas \begin_inset Formula $Ax=b$ \end_inset y \begin_inset Formula $A(x+\Delta x)=b+\Delta b$ \end_inset , \begin_inset Formula $\frac{\Vert\Delta x\Vert}{\Vert x\Vert}\leq\Vert A\Vert\Vert A^{-1}\Vert\frac{\Vert\Delta b\Vert}{\Vert b\Vert}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Es claro que \begin_inset Formula $A\Delta x=\Delta b$ \end_inset y por tanto \begin_inset Formula $\Delta x=A^{-1}\Delta b$ \end_inset , con lo que \begin_inset Formula $\Vert\Delta x\Vert\leq\Vert A^{-1}\Vert\Vert\Delta b\Vert$ \end_inset , y como también \begin_inset Formula $\Vert b\Vert=\Vert Ax\Vert\leq\Vert A\Vert\Vert x\Vert$ \end_inset , podemos obtener la fórmula despejando. \end_layout \end_deeper \begin_layout Enumerate Considerando los sistemas \begin_inset Formula $Ax=b$ \end_inset y \begin_inset Formula $(A+\Delta A)(x+\Delta x)=b$ \end_inset , \begin_inset Formula $\frac{\Vert\Delta x\Vert}{\Vert x+\Delta x\Vert}\leq\Vert A^{-1}\Vert\Vert\Delta A\Vert$ \end_inset y \begin_inset Formula $\frac{\Vert\Delta x\Vert}{\Vert x\Vert}\leq\frac{\Vert A^{-1}\Vert\Vert\Delta A\Vert}{1-\Vert A^{-1}\Vert\Vert\Delta A\Vert}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $(A+\Delta A)(x+\Delta x)=Ax+A\Delta x+\Delta A(x+\Delta x)=b+A\Delta x+\Delta A(x+\Delta x)=b$ \end_inset , luego \begin_inset Formula $A\Delta x=-\Delta A(x+\Delta x)$ \end_inset y por tanto \begin_inset Formula $\Delta x=-A^{-1}\Delta A(x+\Delta x)$ \end_inset . Entonces \begin_inset Formula $\Vert\Delta x\Vert\leq\Vert A^{-1}\Vert\Vert\Delta A\Vert\Vert x+\Delta x\Vert$ \end_inset , lo que nos da la primera desigualdad. A partir de aquí, \begin_inset Formula $\Vert x+\Delta x\Vert\leq\Vert x\Vert+\Vert\Delta x\Vert\leq\Vert x\Vert+\Vert A^{-1}\Vert\Vert\Delta A\Vert\Vert x+\Delta x\Vert$ \end_inset y por tanto \begin_inset Formula $\Vert x+\Delta x\Vert(1-\Vert A^{-1}\Vert\Vert\Delta A\Vert)\leq\Vert x\Vert$ \end_inset , y despejando de esto y la primera desigualdad se obtiene la segunda. \end_layout \end_deeper \begin_layout Standard Llamamos \series bold número de condición \series default de \begin_inset Formula $A$ \end_inset respecto a la norma \begin_inset Formula $\Vert\cdot\Vert$ \end_inset a \begin_inset Formula $\text{cond}A\coloneqq \Vert A\Vert\Vert A^{-1}\Vert$ \end_inset , con lo que si \begin_inset Formula $Ax=b$ \end_inset y \begin_inset Formula $A(x+\Delta x)=b+\Delta b$ \end_inset entonces \begin_inset Formula $\frac{\Vert\Delta x\Vert}{\Vert x\Vert}\leq\text{cond}A\frac{\Vert\Delta b\Vert}{\Vert b\Vert}$ \end_inset , y si \begin_inset Formula $Ax=b$ \end_inset y \begin_inset Formula $(A+\Delta)(x+\Delta x)=b$ \end_inset entonces \begin_inset Formula $\frac{\Vert\Delta x\Vert}{\Vert x+\Delta x\Vert}\leq\text{cond}A\frac{\Vert\Delta A\Vert}{\Vert A\Vert}$ \end_inset . Estas desigualdades son las mejores posibles en el sentido de que se pueden encontrar \begin_inset Formula $b,\Delta b\neq0$ \end_inset para los que se obtiene la igualdad en la primera desigualdad y \begin_inset Formula $b\neq0$ \end_inset y \begin_inset Formula $\Delta A\neq0$ \end_inset para los que se obtiene en la segunda. \end_layout \begin_layout Standard Llamamos \begin_inset Formula $\text{cond}_{p}(A)\coloneqq \Vert A^{-1}\Vert_{p}\Vert A\Vert_{p}$ \end_inset . Para toda \begin_inset Formula $A\in{\cal M}_{n}$ \end_inset invertible: \end_layout \begin_layout Enumerate \begin_inset Formula $\text{cond}A\geq1$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\text{cond}A=\text{cond}A^{-1}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\forall\alpha\in\mathbb{K}\setminus0,\text{cond}(\alpha A)=\text{cond}A$ \end_inset . \end_layout \begin_layout Enumerate Sean \begin_inset Formula $M$ \end_inset el mayor valor singular de \begin_inset Formula $A$ \end_inset y \begin_inset Formula $m$ \end_inset el menor, \begin_inset Formula $\text{cond}_{2}A=\frac{M}{m}$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $A$ \end_inset es normal, sean \begin_inset Formula $M$ \end_inset el mayor valor propio de \begin_inset Formula $A$ \end_inset y \begin_inset Formula $m$ \end_inset el menor, \begin_inset Formula $\text{cond}_{2}A=\rho(A)\rho(A^{-1})=\frac{|\lambda_{n}(A)|}{|\lambda_{1}(A)|}$ \end_inset . \end_layout \begin_layout Enumerate Sea \begin_inset Formula $U$ \end_inset una matriz unitaria, \begin_inset Formula $\text{cond}_{2}A=\text{cond}_{2}(UA)=\text{cond}_{2}(AU)=\text{cond}_{2}(U^{-1}AU)$ \end_inset . \end_layout \begin_layout Standard Sean \begin_inset Formula $A$ \end_inset diagonalizable, \begin_inset Formula $P$ \end_inset invertible con \begin_inset Formula $D\coloneqq P^{-1}AP=:\text{diag}(\lambda_{i})$ \end_inset , \begin_inset Formula $\Vert\cdot\Vert$ \end_inset una norma con \begin_inset Formula $\Vert\text{diag}(d_{1},\dots,d_{n})\Vert=\max_{i}|d_{i}|$ \end_inset para toda matriz diagonal y \begin_inset Formula $D_{i}\coloneqq B(\lambda_{i},\text{cond}(P)\Vert\Delta A\Vert)\subseteq\mathbb{C}$ \end_inset , \begin_inset Formula \[ \sigma(A+\Delta A)\subseteq\bigcup_{i=1}^{n}D_{i}. \] \end_inset \end_layout \begin_layout Standard \series bold Demostración: \series default Sea \begin_inset Formula $\lambda\neq\lambda_{1},\dots,\lambda_{n}$ \end_inset , \begin_inset Formula $D-\lambda I$ \end_inset es invertible con inversa \begin_inset Formula $\text{diag}(\frac{1}{\lambda_{1}-\lambda},\dots,\frac{1}{\lambda_{n}-\lambda})$ \end_inset . Si \begin_inset Formula $\lambda$ \end_inset es valor propio de \begin_inset Formula $A+\Delta A$ \end_inset , \begin_inset Formula $A+\Delta A-\lambda I$ \end_inset no debe tener inversa, por lo que tampoco debe tener inversa \begin_inset Formula $P^{-1}(A+\Delta A-\lambda I)P=P^{-1}AP-P^{-1}\lambda IP+P^{-1}\Delta AP=D-\lambda I+P^{-1}\Delta AP=(D-\lambda I)(I+(D-\lambda I)^{-1}P^{-1}\Delta AP)=:(D-\lambda I)(I+B)$ \end_inset , con lo que \begin_inset Formula $I+B$ \end_inset no debe ser invertible. Ahora bien, si \begin_inset Formula $\Vert B\Vert<1$ \end_inset , \begin_inset Formula \begin{multline*} (I+B)\sum_{k=0}^{n}(-1)^{k}B^{k}=\sum_{k=0}^{n}(-1)^{k}(B^{k}+B^{k+1})=\sum_{k=0}^{n}(-1)^{k}B^{k}+\sum_{k=1}^{n+1}(-1)^{k-1}B^{n}=\\ =\sum_{k=0}^{n}(-1)^{k}B^{k}-\sum_{k=1}^{n+1}(-1)^{k}B^{k}=B^{0}+(-1)^{n}B^{n+1}=I+(-1)^{n}B^{n+1}, \end{multline*} \end_inset pero \begin_inset Formula $\lim_{n}B^{n+1}=0$ \end_inset , luego \begin_inset Formula \[ (I+B)\sum_{k=0}^{\infty}(-1)^{k}B^{k}=\lim_{n}(I+(-1)^{n}B^{n+1})=I \] \end_inset y \begin_inset Formula $\sum_{k=0}^{\infty}(-1)^{k}B^{k}$ \end_inset es la inversa de \begin_inset Formula $I+B$ \end_inset . Por tanto \begin_inset Formula $\Vert B\Vert\geq1$ \end_inset , luego \begin_inset Formula $1\leq\Vert(D-\lambda I)^{-1}P^{-1}\Delta AP\Vert\leq\Vert(D-\lambda I)^{-1}\Vert\Vert P^{-1}\Vert\Vert\Delta A\Vert\Vert P\Vert=\Vert(D-\lambda I)^{-1}\Vert\Vert\Delta A\Vert\text{cond}(P)$ \end_inset , y como \begin_inset Formula \[ \Vert(D-\lambda I)^{-1}\Vert=\max_{k}\left|\frac{1}{\lambda_{k}-\lambda}\right|=\frac{1}{\min_{k}|\lambda_{k}-\lambda|}, \] \end_inset queda \begin_inset Formula $1\leq\frac{\Vert\Delta A\Vert\text{cond}(P)}{\min_{k}|\lambda_{k}-\lambda|}$ \end_inset y por tanto \begin_inset Formula $\min_{k}|\lambda_{k}-\lambda|\leq\Vert\Delta A\Vert\text{cond}(P)$ \end_inset . \end_layout \end_body \end_document