#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style swiss \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Polinomios con coeficientes en un cuerpo \end_layout \begin_layout Standard Un \series bold polinomio \series default con coeficientes en el cuerpo \begin_inset Formula $K$ \end_inset es una expresión de la forma \begin_inset Formula \[ a_{0}+a_{1}X+a_{2}X^{2}+\dots+a_{n}X^{n}=\sum_{i=0}^{n}a_{i}X_{i} \] \end_inset con \begin_inset Formula $a_{0},\dots,a_{n}\in K$ \end_inset . El símbolo \begin_inset Formula $X$ \end_inset se llama \series bold indeterminada \series default y llamamos \series bold coeficiente \series default de grado \begin_inset Formula $i$ \end_inset a \begin_inset Formula $a_{i}$ \end_inset , \series bold término independiente \series default a \begin_inset Formula $a_{0}$ \end_inset y \series bold coeficiente principal \series default o \series bold líder \series default a \begin_inset Formula $a_{n}$ \end_inset si es \begin_inset Formula $a_{n}\neq0$ \end_inset . Un polinomio es \series bold mónico \series default si \begin_inset Formula $a_{n}=1$ \end_inset . Los polinomios de forma \begin_inset Formula $a_{0}$ \end_inset se llaman \series bold constantes \series default y los identificamos con los elementos de \begin_inset Formula $K$ \end_inset . El conjunto de todos los polinomios con coeficientes en \begin_inset Formula $K$ \end_inset se denota \begin_inset Formula $K[X]$ \end_inset , y dos polinomios \begin_inset Formula $P=a_{0}+\dots+a_{n}X^{n},Q=b_{0}+\dots+b_{m}X^{m}\in K[X]$ \end_inset con \begin_inset Formula $n\leq m$ \end_inset son iguales si \begin_inset Formula $a_{i}=b_{i}$ \end_inset para \begin_inset Formula $i\in\{1,\dots,n\}$ \end_inset y \begin_inset Formula $b_{j}=0$ \end_inset para \begin_inset Formula $j\in\{n+1,\dots,m\}$ \end_inset . \end_layout \begin_layout Standard Definimos \begin_inset Formula $P+Q=(a_{0}+b_{0})+(a_{1}+b_{1})X+\dots+(a_{n}+b_{n})X^{n}$ \end_inset , y \begin_inset Formula $PQ=c_{0}+c_{1}X+\dots+c_{n+m}X^{n+m}$ \end_inset si \begin_inset Formula $c_{k}=\sum_{i+j=k}a_{i}b_{j}=a_{0}b_{k}+a_{1}b_{k-1}+\dots+a_{k}b_{0}$ \end_inset . Así, \begin_inset Formula $K[X]$ \end_inset es un anillo conmutativo. \end_layout \begin_layout Standard \begin_inset Formula $P$ \end_inset tiene \series bold grado \series default \begin_inset Formula $n$ \end_inset si \begin_inset Formula $P=\sum_{i=0}^{n}a_{i}X^{i}$ \end_inset con \begin_inset Formula $a_{n}\neq0$ \end_inset , y se denota con \begin_inset Formula $\text{gr}(P)$ \end_inset . Por convención, si \begin_inset Formula $P(X)=0$ \end_inset , \begin_inset Formula $\text{gr}(P)=-\infty$ \end_inset . Si tomamos el convenio de que \begin_inset Formula $-\infty+n=-\infty$ \end_inset , \begin_inset Formula $(-\infty)+(-\infty)=-\infty$ \end_inset y \begin_inset Formula $-\inftyn$ \end_inset raíces de \begin_inset Formula $P$ \end_inset en \begin_inset Formula $K$ \end_inset , entonces \begin_inset Formula $P=0$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $\text{gr}(P)=n\geq0$ \end_inset y existen \begin_inset Formula $a_{1},\dots,a_{m}\in K$ \end_inset tales que \begin_inset Formula $P(a_{i})=Q(a_{i})$ \end_inset con \begin_inset Formula $m>n$ \end_inset , entonces \begin_inset Formula $P=Q$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $K$ \end_inset es un cuerpo infinito y \begin_inset Formula $P,Q\in K[X]$ \end_inset son distintos, entonces las funciones \begin_inset Formula $P,Q:K\rightarrow K$ \end_inset son distintas. \end_layout \begin_layout Enumerate Sea \begin_inset Formula $P=a_{0}+\dots+a_{n}X^{n}\in K[X]$ \end_inset con \begin_inset Formula $\text{gr}(P)=n$ \end_inset y raíces \begin_inset Formula $r_{1},\dots,r_{n}$ \end_inset (no necesariamente distintas), entonces \begin_inset Formula $P=a_{n}(X-r_{1})\cdots(X-r_{n})$ \end_inset . \end_layout \begin_layout Section Factorización y raíces de polinomios \end_layout \begin_layout Standard \begin_inset Formula $P\in K[X]$ \end_inset con \begin_inset Formula $\text{gr}(P)>0$ \end_inset es \series bold irreducible \series default o \series bold primo \series default si \begin_inset Formula $Q|P\implies\text{gr}(Q)=0\lor\exists k\in K:Q=kP$ \end_inset . Así: \begin_inset Formula \[ P\text{ es irreducible}\iff(P|QR\implies P|Q\lor P|R)\iff(P|Q_{1}\cdots Q_{n}\implies\exists i:P|Q_{i}) \] \end_inset \end_layout \begin_layout Standard \series bold Teorema: \series default Todo \begin_inset Formula $P\in K[X]$ \end_inset con \begin_inset Formula $\text{gr}(P)\geq1$ \end_inset factoriza como producto de polinomios irreducibles, y esta factorización es única salvo asociados y orden. \end_layout \begin_layout Section Polinomios irreducibles en \begin_inset Formula $\mathbb{R}[X]$ \end_inset y \begin_inset Formula $\mathbb{C}[X]$ \end_inset . Teorema Fundamental del Álgebra \end_layout \begin_layout Standard El \series bold Teorema Fundamental del Álgebra \series default afirma que todo \begin_inset Formula $P\in\mathbb{C}[X]$ \end_inset con \begin_inset Formula $\text{gr}(P)>0$ \end_inset tiene al menos una raíz en \begin_inset Formula $\mathbb{C}$ \end_inset . Así: \end_layout \begin_layout Enumerate \begin_inset Formula $P\in\mathbb{C}[X]$ \end_inset es irreducible si y sólo si \begin_inset Formula $\text{gr}(P)=1$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\forall P\in\mathbb{C}[X],\text{gr}(P)=n\geq1,\exists r,r_{1},\dots,r_{n}\in\mathbb{C}:P=r(X-r_{1})\cdots(X-r_{n})$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $z\in\mathbb{C}$ \end_inset es raíz de \begin_inset Formula $P\in\mathbb{R}[X]$ \end_inset , entonces \begin_inset Formula $\overline{z}$ \end_inset también lo es. \end_layout \begin_layout Enumerate Si \begin_inset Formula $P\in\mathbb{R}[X]$ \end_inset es irreducible, entonces, o \begin_inset Formula $\text{gr}(P)=1$ \end_inset , o \begin_inset Formula $\text{gr}(P)=2$ \end_inset y no tiene raíces reales. \end_layout \end_body \end_document