#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Un \series bold conjunto borroso \series default \begin_inset Formula $F$ \end_inset sobre un \series bold universo de discurso \series default \begin_inset Formula $U$ \end_inset es una función \begin_inset Formula $\mu_{F}:U\to[0,1]$ \end_inset llamada \series bold función de pertenencia \series default de \begin_inset Formula $F$ \end_inset , que representa el grado de pertenencia de cada elemento de \begin_inset Formula $U$ \end_inset en \begin_inset Formula $F$ \end_inset . Escribimos \begin_inset Formula \[ F\eqqcolon\sum_{x\in U}\frac{\mu_{F}(x)}{x}\eqqcolon\int_{x\in U}\frac{\mu_{F}(x)}{x}, \] \end_inset donde la fracción y los símbolos sumatorio e integral son solo símbolos y no se pueden simplificar. Se suele usar la primera notación cuando \begin_inset Formula $U$ \end_inset es \series bold discreto \series default (todos sus puntos son aislados) y la segunda cuando es \series bold continuo \series default (no tiene puntos aislados). Si \begin_inset Formula $U=\{x_{1},\dots,x_{n}\}$ \end_inset , escribimos \begin_inset Formula \[ F\eqqcolon\left\{ \frac{\mu_{F}(x_{1})}{x_{1}}+\dots+\frac{\mu_{F}(x_{n})}{x_{n}}\right\} . \] \end_inset Llamamos \series bold soporte \series default de \begin_inset Formula $F$ \end_inset a \begin_inset Formula $\text{Supp}_{F}\coloneqq\{x\in U\mid F(x)>0\}$ \end_inset , \series bold núcleo \series default de \begin_inset Formula $F$ \end_inset a \begin_inset Formula $\ker F\coloneqq\{x\in U\mid\mu_{F}(x)=\sup_{x\in U}F(x)\}$ \end_inset , \series bold altura \series default de \begin_inset Formula $F$ \end_inset a \begin_inset Formula $\text{Height}_{F}\coloneqq\sup_{x\in U}F(x)$ \end_inset y, para \begin_inset Formula $\alpha\in[0,1)$ \end_inset , \series bold \begin_inset Formula $\alpha$ \end_inset -corte \series default de \begin_inset Formula $F$ \end_inset a \begin_inset Formula $F_{\alpha}=\{x\in U\mid F(x)>\alpha\}$ \end_inset . \begin_inset Formula $F$ \end_inset es \series bold vacío \series default , \begin_inset Formula $F=\emptyset$ \end_inset , si \begin_inset Formula $\text{Supp}_{F}=\emptyset$ \end_inset ; \series bold unitario \series default o \series bold \emph on \lang english singleton \series default \emph default \lang spanish si \begin_inset Formula $|\text{Supp}_{F}|=1$ \end_inset , y \series bold normalizado \series default si \begin_inset Formula $\text{Height}_{F}=1$ \end_inset . Si \begin_inset Formula $U$ \end_inset es un subconjunto de un espacio vectorial \begin_inset Formula $E$ \end_inset y se considera \begin_inset Formula $F$ \end_inset definido sobre \begin_inset Formula $E$ \end_inset con \begin_inset Formula $F(x)=0$ \end_inset para \begin_inset Formula $x\in E\setminus U$ \end_inset , \begin_inset Formula $F$ \end_inset es \series bold convexo \series default si \begin_inset Formula $\forall x,y\in E,\forall\alpha\in[0,1],A(\alpha x+(1-\alpha)y)\geq\min\{A(x),A(y)\}$ \end_inset . \end_layout \begin_layout Standard Funciones de pertenencia comunes sobre el universo \begin_inset Formula $\mathbb{R}$ \end_inset : \end_layout \begin_layout Enumerate \series bold Funciones trapezoidales: \series default Para \begin_inset Formula $a1\iff p<-2$ \end_inset , \begin_inset Formula $f(0,1)=f(1,0)=0$ \end_inset y \begin_inset Formula $f(1,1)=1$ \end_inset . Para ver que es asociativa, primero vemos que lo es \begin_inset Formula $f$ \end_inset . Si \begin_inset Formula $g(x,y,z)\coloneqq f(f(x,y),z)-f(x,f(y,z))$ \end_inset : \begin_inset Formula \begin{align*} \frac{\partial g}{\partial x} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial a}(x,y)-\frac{\partial f}{\partial a}(x,f(y,z))=\\ & =(1+p-pz)(1+p-py)-(1+p-p((1+p)(y+z-1)-pyz))=\\ & =1+2p+p^{2}-py-p^{2}y-pz-p^{2}z+p^{2}yz-\\ & -1-2p+py+pz+p^{2}y+p^{2}z-p^{2}-p^{2}yz=0,\\ \frac{\partial g}{\partial y} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial b}(x,y)-\frac{\partial f}{\partial b}(x,f(y,z))\frac{\partial f}{\partial a}(y,z)=\\ & =(1+p-pz)(1+p-px)-(1+p-px)(1+p-pz)=0;\\ \frac{\partial g}{\partial z} & =0, \end{align*} \end_inset donde la última derivada es por simetría respecto a la primera usando la conmutatividad de \begin_inset Formula $f$ \end_inset . Entonces, como \begin_inset Formula $g(0,0,0)=f(f(0,0),0)-f(0,f(0,0))=0$ \end_inset por conmutatividad de \begin_inset Formula $f$ \end_inset , \begin_inset Formula $g\equiv0$ \end_inset y \begin_inset Formula $f$ \end_inset es asociativa. Una propiedad de \begin_inset Formula $f$ \end_inset es que \begin_inset Formula $f(a,b)\leq\min\{a,b\}$ \end_inset para \begin_inset Formula $a,b\in[0,1]$ \end_inset , pues \begin_inset Formula $f(a,b)\leq f(a,1)=a$ \end_inset y del mismo modo \begin_inset Formula $f(a,b)\leq b$ \end_inset . Si \begin_inset Formula $f(a,b)\leq0$ \end_inset , \begin_inset Formula $a*b=0$ \end_inset y \begin_inset Formula $(a*b)*c=0$ \end_inset , pero entonces \begin_inset Formula $b*c\leq b$ \end_inset y por tanto \begin_inset Formula $a*(b*c)\leq a*b=0$ \end_inset . Si \begin_inset Formula $f(a,b)>0$ \end_inset pero \begin_inset Formula $f(f(a,b),c)\leq0$ \end_inset , entonces \begin_inset Formula $(a*b)*c=0$ \end_inset , pero si \begin_inset Formula $f(b,c)>0$ \end_inset entonces \begin_inset Formula $a*(b*c)=\max\{0,f(a,f(b,c))\}=\max\{0,f(f(a,b),c)\}=0$ \end_inset , y si \begin_inset Formula $f(b,c)\leq0$ \end_inset entonces \begin_inset Formula $a*(b*c)=a*0=0$ \end_inset . Finalmente, si \begin_inset Formula $f(a,b)>0$ \end_inset y \begin_inset Formula $f(f(a,b),c)>0$ \end_inset , entonces \begin_inset Formula $f(a,f(b,c))>0$ \end_inset y por monotonía \begin_inset Formula $f(b,c)\geq f(f(a,b),c)>0$ \end_inset , luego \begin_inset Formula $a*(b*c)=f(a,f(b,c))=f(f(a,b),c)=(a*b)*c$ \end_inset . Esto prueba la asociatividad. \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Producto drástico: \series default \begin_inset Formula \[ x*y\coloneqq\begin{cases} x, & y=1;\\ y, & x=1;\\ 0, & \text{en otro caso}. \end{cases} \] \end_inset \begin_inset Note Comment status open \begin_layout Plain Layout Claramente es conmutativa y monótona. Se tiene \begin_inset Formula $1*1=1$ \end_inset y \begin_inset Formula $1*0=0$ \end_inset , y si \begin_inset Formula $a\in[0,1)$ \end_inset , \begin_inset Formula $a*1=a$ \end_inset y \begin_inset Formula $a*0=0$ \end_inset . Para la asociatividad, sean \begin_inset Formula $a,b,c\in[0,1]$ \end_inset . Si \begin_inset Formula $b=1$ \end_inset , \begin_inset Formula $(a*b)*c=a*c=a*(b*c)$ \end_inset . En otro caso, si \begin_inset Formula $a=1$ \end_inset , \begin_inset Formula $(a*b)*c=b*c=a*(b*c)$ \end_inset , y si \begin_inset Formula $c=1$ \end_inset es análogo. Si ninguno es 1, \begin_inset Formula $(a*b)*c=0*c=0=a*0=a*(b*c)$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Familia Dubois-Prade: \series default Para \begin_inset Formula $p\in[0,1]$ \end_inset , \begin_inset Formula $x*y=\frac{xy}{\max\{x,y,p\}}$ \end_inset (tomando límites cuando \begin_inset Formula $x,y=0$ \end_inset para \begin_inset Formula $p=0$ \end_inset ). \begin_inset Note Comment status open \begin_layout Plain Layout Claramente es conmutativa. Como \begin_inset Formula $0\leq xy\leq\max\{x,y,p\}$ \end_inset , la función está en \begin_inset Formula $[0,1]$ \end_inset donde esté definida, y para \begin_inset Formula $p=0$ \end_inset , \begin_inset Formula \[ 0*0=\lim_{x,y\to0^{+}}\frac{xy}{\max\{x,y\}}=\lim_{x,y\to0^{+}}\min\{x,y\}=0. \] \end_inset En general, \begin_inset Formula $a*0=\frac{0}{\max\{a,p\}}=0$ \end_inset (salvo en el caso \begin_inset Formula $\max\{a,p\}=0$ \end_inset que ya hemos tratado) y \begin_inset Formula $a*1=\frac{a}{\max\{a,1,p\}}=a$ \end_inset . Se tiene \begin_inset Formula \begin{align*} \frac{\partial(x*y)}{\partial x} & =\begin{cases} 0, & x\geq y,p;\\ 1, & y\geq x,p;\\ y, & p\geq x,y; \end{cases} & \frac{\partial(x*y)}{\partial y} & =\begin{cases} 1, & x\geq y,p;\\ 0, & y\geq x,p;\\ x, & p\geq x,y; \end{cases} \end{align*} \end_inset con lo que \begin_inset Formula $*$ \end_inset es monótona. Para la asociatividad, si \begin_inset Formula $a,b,c\in[0,1]$ \end_inset , \begin_inset Formula \begin{align*} (a*b)*c & =\frac{(a*b)c}{\max\{a*b,c,p\}}=\frac{abc}{\max\{a,b,p\}\max\{a*b,c,p\}},\\ a*(b*c) & =\frac{a(b*c)}{\max\{a,b*c,p\}}=\frac{abc}{\max\{b,c,p\}\max\{a,b*c,p\}}. \end{align*} \end_inset Si \begin_inset Formula $p\geq a,b,c$ \end_inset , \begin_inset Formula $(a*b)*c=\frac{abc}{p^{2}}=a*(b*c)$ \end_inset . Si \begin_inset Formula $a\geq p,b,c$ \end_inset , \begin_inset Formula $a*b=\frac{ab}{\max\{a,b,p\}}=\frac{ab}{a}=b$ \end_inset , luego \begin_inset Formula $(a*b)*c=\frac{abc}{a\max\{a*b,c,p\}}=\frac{abc}{a\max\{b,c,p\}}=a*(b*c)$ \end_inset . Si \begin_inset Formula $c\geq p,b,a$ \end_inset es análogo. Si \begin_inset Formula $b\geq p,a,c$ \end_inset , \begin_inset Formula $a*b=a$ \end_inset y \begin_inset Formula $b*c=c$ \end_inset , luego \begin_inset Formula $(a*b)*c=\frac{abc}{b\max\{a,c,p\}}=a*(b*c)$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Familia Yager: \series default Para \begin_inset Formula $p\in\mathbb{R}^{+}$ \end_inset , \begin_inset Formula $x*y\coloneqq1-\min\{1,\sqrt[p]{(1-x)^{p}+(1-y)^{p}}\}$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Las propiedades se deducen de las de la familia correspondiente de s-normas. \end_layout \end_inset \end_layout \begin_layout Standard Algunas s-normas: \end_layout \begin_layout Enumerate \series bold Máximo: \series default \begin_inset Formula $x\vee y\coloneqq\max\{x,y\}$ \end_inset . \end_layout \begin_layout Enumerate \series bold Suma algebraica: \series default \begin_inset Formula $x\oplus y\coloneqq x+y-xy$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Claramente es conmutativa, y es monótona porque \begin_inset Formula $\frac{\partial(x\oplus y)}{\partial x}=1-y$ \end_inset y \begin_inset Formula $\frac{\partial(x\oplus y)}{\partial y}=1-x$ \end_inset . \begin_inset Formula $a\oplus0=a$ \end_inset y \begin_inset Formula $a\oplus1=a+1-a=1$ \end_inset . Para ver que es asociativa, \begin_inset Formula $(a\oplus b)\oplus c=a\oplus b+c-(a\oplus b)c=a+b-ab+c-ac-bc+abc$ \end_inset , que es simétrica respecto a las variables, por lo que \begin_inset Formula $(a\oplus b)\oplus c=(c\oplus b)\oplus a=a\oplus(b\oplus c)$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Suma acotada: \series default Para \begin_inset Formula $p\geq-1$ \end_inset , \begin_inset Formula $x\oplus y\coloneqq\min(1,x+y+pxy)$ \end_inset . Se suele usar \begin_inset Formula $p=0$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Claramente es conmutativa, \begin_inset Formula $a\oplus0=\min(1,a)=a$ \end_inset y \begin_inset Formula $a\oplus1=\min(1,a+1+pa)=1$ \end_inset . \end_layout \begin_layout Plain Layout Para la monotonía, sea \begin_inset Formula $f(a,b)\coloneqq a+b-pab$ \end_inset , \begin_inset Formula \begin{align*} \frac{\partial f}{\partial a} & =1+pb, & \frac{\partial f}{\partial b} & =1+pa. \end{align*} \end_inset Para ver que es asociativa, primero vemos que lo es \begin_inset Formula $f$ \end_inset . Sea entonces \begin_inset Formula $g(x,y,z)\coloneqq f(f(x,y),z)-f(x,f(y,z))$ \end_inset , \begin_inset Formula \begin{align*} \frac{\partial g}{\partial x} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial a}(x,y)-\frac{\partial f}{\partial a}(x,f(y,z))=\\ & =(1+pz)(1+py)-(1+p(y+z-pyz))=\\ & =1+py+pz-p^{2}yz-1-py-pz-p^{2}yz=0,\\ \frac{\partial g}{\partial y} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial b}(x,y)-\frac{\partial f}{\partial b}(x,f(y,z))\frac{\partial f}{\partial a}(y,z)=\\ & =(1+pz)(1+px)-(1+px)(1+pz)=0,\\ \frac{\partial g}{\partial z} & =0, \end{align*} \end_inset donde la última es por simetría, y como \begin_inset Formula $g(0,0,0)=f(f(0,0),0)-f(0,f(0,0))=0$ \end_inset por conmutatividad, \begin_inset Formula $g\equiv0$ \end_inset y \begin_inset Formula $f$ \end_inset es asociativa. Se tiene \begin_inset Formula $f(a,b)\geq\max\{a,b\}$ \end_inset , pues \begin_inset Formula $f(a,b)\geq a\oplus b\geq a\oplus0=a$ \end_inset y análogamente para \begin_inset Formula $b$ \end_inset . Si \begin_inset Formula $f(a,b)\geq1$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=1\oplus c=1$ \end_inset , pero \begin_inset Formula $a\oplus(b\oplus c)\geq a\oplus b=1$ \end_inset . Si \begin_inset Formula $f(a,b)<1$ \end_inset pero \begin_inset Formula $f(f(a,b),c)\geq1$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=\min\{1,f(f(a,b),c)\}=1$ \end_inset , pero si \begin_inset Formula $f(b,c)\geq1$ \end_inset entonces \begin_inset Formula $a\oplus(b\oplus c)=a\oplus1=1$ \end_inset , y si \begin_inset Formula $f(b,c)<1$ \end_inset entonces \begin_inset Formula $a\oplus(b\oplus c)=\min\{1,f(a,f(b,c))\}=\min\{1,f(f(a,b),c)\}=1$ \end_inset . Finalmente, si \begin_inset Formula $f(a,b)<1$ \end_inset y \begin_inset Formula $f(f(a,b),c)<1$ \end_inset , \begin_inset Formula $f(a,f(b,c))<1$ \end_inset y por monotonía \begin_inset Formula $f(b,c)\leq f(f(a,b),c)<1$ \end_inset , luego \begin_inset Formula $a\oplus(b\oplus c)=f(a,f(b,c))=f(f(a,b),c)=(a\oplus b)\oplus c$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Suma drástica: \series default \begin_inset Formula \[ x\oplus y=\begin{cases} x, & y=0;\\ y, & x=0;\\ 1, & \text{en otro caso}. \end{cases} \] \end_inset \begin_inset Note Comment status open \begin_layout Plain Layout Claramente es conmutativa y monótona, \begin_inset Formula $a\oplus0=a$ \end_inset , \begin_inset Formula $0\oplus1=1$ \end_inset y, para \begin_inset Formula $a>0$ \end_inset , \begin_inset Formula $a\oplus1=1$ \end_inset . Para la asociatividad, sean \begin_inset Formula $a,b,c\in[0,1]$ \end_inset , si \begin_inset Formula $b=0$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=a\oplus c=a\oplus(b\oplus c)$ \end_inset ; en otro caso, si \begin_inset Formula $a=0$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=b\oplus c=a\oplus(b\oplus c)$ \end_inset ; si \begin_inset Formula $c=0$ \end_inset es análogo, y si \begin_inset Formula $a,b,c>0$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=1\oplus c=1=a\oplus1=a\oplus(b\oplus c)$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Familia Dubois-Prade: \series default Para \begin_inset Formula $p\in[0,1]$ \end_inset , \begin_inset Formula $x\oplus y\coloneqq1-\frac{(1-x)(1-y)}{\max\{1-x,1-y,p\}}$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Las propiedades se deducen de las de la familia correspondiente de t-normas. \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Familia Yager: \series default Para \begin_inset Formula $p\in\mathbb{R}^{+}$ \end_inset , \begin_inset Formula $x\oplus y\coloneqq\min\{1,\sqrt[p]{x^{p}+y^{p}}\}$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Claramente es conmutativa y monótona, \begin_inset Formula $a\oplus0=\min\{1,\sqrt[p]{a^{p}}\}=a$ \end_inset y \begin_inset Formula $a\oplus1=\min\{1,\sqrt[p]{a^{p}+1}\}=1$ \end_inset ya que \begin_inset Formula $\sqrt[p]{a^{p}+1}\geq\sqrt[p]{1}=1$ \end_inset . Para la asociatividad, sea \begin_inset Formula $f(x,y)\coloneqq\sqrt[p]{x^{p}+y^{p}}$ \end_inset , queremos ver que \begin_inset Formula $f$ \end_inset es asociativa, pero para \begin_inset Formula $a,b,c\in[0,1]$ \end_inset , \begin_inset Formula \[ f(f(a,b),c)=\sqrt[p]{\left(\sqrt[p]{a^{p}+b^{p}}\right)^{p}+c^{p}}=\sqrt[p]{a^{p}+b^{p}+c^{p}}=f(a,f(b,c)). \] \end_inset Si \begin_inset Formula $f(a,b)\geq1$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=1\oplus c=1$ \end_inset , pero \begin_inset Formula $1\geq a\oplus(b\oplus c)\geq a\oplus b=1$ \end_inset . Si \begin_inset Formula $f(a,b)<1$ \end_inset pero \begin_inset Formula $f(f(a,b),c)=f(a,f(b,c))\geq1$ \end_inset , \begin_inset Formula $(a\oplus b)\oplus c=\max\{1,f(f(a,b),c)\}=1$ \end_inset , pero si \begin_inset Formula $f(b,c)\geq1$ \end_inset , \begin_inset Formula $a\oplus(b\oplus c)=a\oplus1=1$ \end_inset , y si \begin_inset Formula $f(b,c)<1$ \end_inset , \begin_inset Formula $a\oplus(b\oplus c)=\max\{1,f(a,f(b,c))=1$ \end_inset . Finalmente, si \begin_inset Formula $f(a,b)<1$ \end_inset y \begin_inset Formula $f(f(a,b),c)<1$ \end_inset , \begin_inset Formula $f(b,c)\leq f(f(a,b),c)<1$ \end_inset y \begin_inset Formula $a\oplus(b\oplus c)=\max\{1,f(a,f(b,c))\}=f(f(a,b),c)=(a\oplus b)\oplus c$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Standard Un \series bold complemento \series default o \series bold negación \series default es una función \begin_inset Formula $N:[0,1]\to[0,1]$ \end_inset monótona decreciente con \begin_inset Formula $N(0)=1$ \end_inset y \begin_inset Formula $N(1)=0$ \end_inset , y es \series bold fuerte \series default si es estrictamente decreciente e involutivo ( \begin_inset Formula $N^{2}=1_{[0,1]}$ \end_inset ). También se puede requerir que sea continuo. Algunos complementos: \end_layout \begin_layout Enumerate \series bold Usual: \series default \begin_inset Formula $N(x)\coloneqq1-x$ \end_inset . \end_layout \begin_layout Enumerate \series bold Familia Sugeno: \series default Para \begin_inset Formula $\lambda\in(-1,\infty)$ \end_inset , \begin_inset Formula $N(x)\coloneqq\frac{1-x}{1+\lambda x}$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula $N(0)=\frac{1}{1}=1$ \end_inset , \begin_inset Formula $N(1)=\frac{0}{1+\lambda}=0$ \end_inset , y como \begin_inset Formula $N$ \end_inset es continua y \begin_inset Formula $N'(x)=\frac{-(1+\lambda x)-\lambda(1-x)}{(1+\lambda x)^{2}}=0$ \end_inset si y sólo si \begin_inset Formula $1+\lambda x=-\lambda+\lambda x$ \end_inset , si y sólo si \begin_inset Formula $\lambda=-1\#$ \end_inset , \begin_inset Formula $N$ \end_inset no tiene extremos internos y es monótona decreciente. \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Familia Yager: \series default Para \begin_inset Formula $w\in\mathbb{R}^{+}$ \end_inset , \begin_inset Formula $N(x)\coloneqq\sqrt[w]{1-x}$ \end_inset . \end_layout \begin_layout Standard Una t-norma \begin_inset Formula $*$ \end_inset y una s-norma \begin_inset Formula $\oplus$ \end_inset son \series bold duales \series default o \series bold conjugadas \series default respecto a un complemento \begin_inset Formula $N$ \end_inset si \begin_inset Formula $N(x\oplus y)=N(x)*N(y)$ \end_inset . Toda t-norma tiene una única s-norma dual bajo el complemento usual. La de la t-norma del mínimo es la s-norma del máximo, y la de la t-norma drástica es la s-norma drástica. Normalmente se usa la negación usual, la t-norma del mínimo y la s-norma del máximo. \end_layout \begin_layout Section Unión, intersección y complemento \end_layout \begin_layout Standard Dados un complemento \begin_inset Formula $N$ \end_inset , una t-norma \begin_inset Formula $*$ \end_inset y una s-norma \begin_inset Formula $\oplus$ \end_inset duales y conjuntos borrosos \begin_inset Formula $A$ \end_inset y \begin_inset Formula $B$ \end_inset sobre un universo \begin_inset Formula $U$ \end_inset , \begin_inset Formula \begin{align*} A\cup B & \coloneqq\int_{x\in U}\frac{A(x)\oplus B(x)}{x}, & A\cap B & \coloneqq\int_{x\in U}\frac{A(x)*B(x)}{x}, & \overline{A} & \coloneqq\int_{x\in U}\frac{N(A(x))}{x}. \end{align*} \end_inset \end_layout \begin_layout Standard Propiedades: \end_layout \begin_layout Enumerate La unión e intersección son conmutativas y asociativas. \end_layout \begin_layout Enumerate \begin_inset Formula $A\cup\emptyset=A$ \end_inset , \begin_inset Formula $A\cap\emptyset=\emptyset$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $A\cup U=A\cap U=A$ \end_inset , donde \begin_inset Formula $U\coloneqq\int_{x\in U}\frac{1}{x}$ \end_inset . \end_layout \begin_layout Standard Las siguientes se cumplen para las normas usuales pero no en general: \end_layout \begin_layout Enumerate \begin_inset Formula $A\cup(B\cap C)=(A\cup B)\cap(A\cup C)$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Para \begin_inset Formula $x\in U$ \end_inset , \begin_inset Formula $\max\{A,\min\{B,C\}\}=\min\{\max\{A,C\},\max\{B,C\}\}$ \end_inset , pero si \begin_inset Formula $0