#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Si \begin_inset Formula $K$ \end_inset es un cuerpo y \begin_inset Formula $A$ \end_inset es un anillo, todo homomorfismo de anillos \begin_inset Formula $h:K\to A$ \end_inset es un isomorfismo \begin_inset Formula $K\to h(K)$ \end_inset . En efecto, \begin_inset Formula $\ker h\subseteq K$ \end_inset es un ideal y los únicos ideales de \begin_inset Formula $K$ \end_inset son 0 y \begin_inset Formula $K$ \end_inset , pero \begin_inset Formula $1\notin\ker h$ \end_inset , luego \begin_inset Formula $\ker h=0$ \end_inset , \begin_inset Formula $h$ \end_inset es inyectivo y \begin_inset Formula $h:K\to h(K)$ \end_inset es biyectivo. \end_layout \begin_layout Standard Una \series bold extensión \series default ( \series bold de cuerpos \series default ) es un par de cuerpos \begin_inset Formula $(K,L)$ \end_inset con \begin_inset Formula $K$ \end_inset es subcuerpo de \begin_inset Formula $L$ \end_inset , que representamos como \begin_inset Formula $K\subset L$ \end_inset , \begin_inset Formula $L/K$ \end_inset o, si \begin_inset Formula $K\neq L$ \end_inset , como \begin_inset Formula $K\subsetneq L$ \end_inset . \end_layout \begin_layout Standard Algunas extensiones son \begin_inset Formula $\mathbb{Q}\subset\mathbb{R}$ \end_inset , \begin_inset Formula $\mathbb{R}\subset\mathbb{C}$ \end_inset y, para todo cuerpo \begin_inset Formula $K$ \end_inset , \begin_inset Formula $K\subset K(X)$ \end_inset , donde \begin_inset Formula $K(X)$ \end_inset es el cuerpo de fracciones de \begin_inset Formula $K[X]$ \end_inset . Otras son \begin_inset Formula $\mathbb{Q}\subset\mathbb{Q}[\sqrt{m}]$ \end_inset para \begin_inset Formula $m\in\mathbb{Z}$ \end_inset no cuadrado y \begin_inset Formula $\mathbb{Q}\subset\mathbb{Q}[i]$ \end_inset . En ef \begin_inset Note Note status open \begin_layout Plain Layout a.pdf::27 \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{GyA} \end_layout \end_inset \end_layout \begin_layout Standard Sea \begin_inset Formula $K$ \end_inset un cuerpo no trivial, existe un subcuerpo \begin_inset Formula $K'$ \end_inset de \begin_inset Formula $K$ \end_inset llamado \series bold subcuerpo primo \series default de \begin_inset Formula $K$ \end_inset contenido en cualquier subcuerpo de \begin_inset Formula $K$ \end_inset , y este es isomorfo a \begin_inset Formula $\mathbb{Z}_{p}$ \end_inset si la característica de \begin_inset Formula $K$ \end_inset es un entero primo \begin_inset Formula $p$ \end_inset o a \begin_inset Formula $\mathbb{Q}$ \end_inset en caso contrario. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \end_body \end_document