#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Sean \begin_inset Formula $K$ \end_inset un cuerpo y \begin_inset Formula $n\geq2$ \end_inset , un \begin_inset Formula $\xi\in K$ \end_inset es una \series bold raíz \begin_inset Formula $n$ \end_inset -ésima de la unidad \series default o \series bold de uno \series default si \begin_inset Formula $\xi^{n}=1$ \end_inset , y llamamos \begin_inset Formula \[ {\cal U}_{n}(K):=\{\xi\in K\mid \xi^{n}=1\}=\left\{\xi\in K\;\middle|\;o_{K^{*}}(\xi)\mid n\right\}. \] \end_inset En efecto, el orden de \begin_inset Formula $\xi$ \end_inset en \begin_inset Formula $K^{*}$ \end_inset es el menor \begin_inset Formula $m>0$ \end_inset con \begin_inset Formula $\xi^{m}=n$ \end_inset , luego si \begin_inset Formula $m\mid n$ \end_inset entonces \begin_inset Formula $\xi^{n}=(\xi^{m})^{n/m}=1^{n/m}=1$ \end_inset y si \begin_inset Formula $\xi^{n}=1$ \end_inset , sean \begin_inset Formula $q$ \end_inset y \begin_inset Formula $r$ \end_inset el cociente y resto de \begin_inset Formula $n/m$ \end_inset , entonces \begin_inset Formula $1=\xi^{mq+r}=(\xi^{m})^{q}\xi^{r}=\xi^{r}$ \end_inset , pero como \begin_inset Formula $r0$ \end_inset , \begin_inset Formula \[ |a^{n}|=\frac{|a|}{\text{mcd}\{|a|,n\}}. \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{CyN} \end_layout \end_inset \end_layout \begin_layout Standard Definimos la \series bold función \begin_inset Formula $\phi$ \end_inset de Euler \series default como \begin_inset Formula $\phi:\mathbb{N}\rightarrow\mathbb{N}$ \end_inset tal que \begin_inset Formula $\phi(m)=|\{x\in\mathbb{N}|1\leq x\leq m\land\text{mcd}(x,m)=1\}|=|\mathbb{Z}_{m}^{*}|$ \end_inset . [...] Si \begin_inset Formula $p$ \end_inset es primo, \begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ \end_inset . [...] Si \begin_inset Formula $p$ \end_inset es primo, \begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard Si un cuerpo \begin_inset Formula $K$ \end_inset tiene una raíz \begin_inset Formula $n$ \end_inset -ésima primitiva de uno \begin_inset Formula $\xi$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $K$ \end_inset tiene exactamente \begin_inset Formula $n$ \end_inset raíces \begin_inset Formula $n$ \end_inset -ésimas de uno, \begin_inset Formula $\xi,\xi^{2},\dots,\xi^{n}=1$ \end_inset , y \begin_inset Formula $\phi(n)$ \end_inset de ellas son primitivas. En particular \begin_inset Formula $X^{n}-1$ \end_inset se descompone completamente en \begin_inset Formula $K[X]$ \end_inset . \end_layout \begin_layout Enumerate Para cada \begin_inset Formula $d\mid n$ \end_inset natural hay una raíz \begin_inset Formula $d$ \end_inset -ésima primitiva en \begin_inset Formula $K$ \end_inset , \begin_inset Formula $\xi^{n/d}$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula $K$ \end_inset es finito, esto se cumple para \begin_inset Formula $n=|K|-1$ \end_inset , y si \begin_inset Formula $K\subseteq\mathbb{C}$ \end_inset , se aplica cuando \begin_inset Formula $e^{2\pi i/n}\in K$ \end_inset . \end_layout \begin_layout Section Polinomios ciclotómicos \end_layout \begin_layout Standard Sean \begin_inset Formula $P$ \end_inset un cuerpo primo ( \begin_inset Formula $\mathbb{Q}$ \end_inset o \begin_inset Formula $\mathbb{Z}_{p}$ \end_inset ), \begin_inset Formula $n\geq2$ \end_inset con \begin_inset Formula $\text{car}P\nmid n$ \end_inset y \begin_inset Formula $L$ \end_inset el cuerpo de descomposición sobre \begin_inset Formula $P$ \end_inset de \begin_inset Formula $X^{n}-1$ \end_inset , que contiene \begin_inset Formula $\phi(n)$ \end_inset raíces \begin_inset Formula $n$ \end_inset -ésimas primitivas de uno \begin_inset Formula $\xi_{1},\dots,\xi_{n}$ \end_inset , llamamos \series bold \begin_inset Formula $n$ \end_inset -ésimo polinomio ciclotómico en característica \begin_inset Formula $\text{car}P$ \end_inset \series default a \begin_inset Formula \[ \Phi_{n}(X):=(X-\xi_{1})\cdots(X-\xi_{r})\in L[X]. \] \end_inset Si \begin_inset Formula $\text{car}K\nmid n$ \end_inset , \begin_inset Formula $X^{n}-1=\prod_{0