#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures false \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style swiss \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Definición axiomática de \begin_inset Formula $\mathbb{R}$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula $\mathbb{R}$ \end_inset es el cuerpo conmutativo totalmente ordenado y completo. \end_layout \begin_layout Subsection Cuerpo conmutativo \end_layout \begin_layout Standard Conjunto con dos operaciones internas: suma ( \begin_inset Formula $\mathbb{K}\times\mathbb{K}\rightarrow\mathbb{K}$ \end_inset con \begin_inset Formula $(x,y)\mapsto x+y$ \end_inset ) y producto ( \begin_inset Formula $\mathbb{K}\times\mathbb{K}\rightarrow\mathbb{K}$ \end_inset con \begin_inset Formula $(x,y)\mapsto x\cdot y$ \end_inset ), con las siguientes propiedades: \begin_inset Formula $\forall a,b,c\in\mathbb{K}$ \end_inset : \end_layout \begin_layout Enumerate \series bold Asociativa de la suma: \series default \begin_inset Formula $a+(b+c)=(a+b)+c$ \end_inset . \end_layout \begin_layout Enumerate \series bold Conmutativa de la suma: \begin_inset Formula $a+b=b+a$ \end_inset . \end_layout \begin_layout Enumerate \series bold Elemento neutro para la suma \series default o \series bold nulo: \series default \begin_inset Formula $\exists!0\in\mathbb{K}:\forall a\in\mathbb{K},0+a=a$ \end_inset . \begin_inset Newline newline \end_inset Pongamos que existe otro \begin_inset Formula $0$ \end_inset ( \begin_inset Formula $0'$ \end_inset ), entonces \begin_inset Formula $0=0+0'=0'$ \end_inset . \end_layout \begin_layout Enumerate \series bold Inverso para la suma \series default u \series bold opuesto: \series default \begin_inset Formula $\exists!a':a+a'=0$ \end_inset . \begin_inset Formula $a'\coloneqq -a$ \end_inset . \begin_inset Newline newline \end_inset Pongamos que existe otro opuesto \begin_inset Formula $a''$ \end_inset , entonces \begin_inset Formula $a'=0+a'=(a''+a)+a'=a''+(a+a')=a''+0=a''$ \end_inset . \end_layout \begin_layout Enumerate \series bold Asociativa del producto: \series default \begin_inset Formula $a\cdot(b\cdot c)=(a\cdot b)\cdot c$ \end_inset . \end_layout \begin_layout Enumerate \series bold Conmutativa del producto: \series default \begin_inset Formula $a\cdot b=b\cdot a$ \end_inset . \end_layout \begin_layout Enumerate \series bold Elemento neutro para el producto \series default o \series bold unidad: \series default \begin_inset Formula $\exists!1\in\mathbb{K}:\forall a\in K,1\cdot a=a$ \end_inset . \begin_inset Newline newline \end_inset Pongamos que existe otro \begin_inset Formula $1$ \end_inset ( \begin_inset Formula $1'$ \end_inset ), entonces \begin_inset Formula $1=1\cdot1'=1'$ \end_inset . \end_layout \begin_layout Enumerate \series bold Inverso para el producto: \series default \begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a'':a\cdot a''=1$ \end_inset ; \begin_inset Formula $a''\coloneqq \frac{1}{a}\coloneqq a^{-1}$ \end_inset . \begin_inset Newline newline \end_inset Pongamos que existe otro \begin_inset Formula $a''$ \end_inset ( \begin_inset Formula $a'$ \end_inset ), entonces \begin_inset Formula $a''=1\cdot a''=(a'\cdot a)\cdot a''=a'\cdot(a\cdot a'')=a'\cdot1=a'$ \end_inset . \end_layout \begin_layout Enumerate \series bold Distributiva: \series default \begin_inset Formula $a\cdot(b+c)=a\cdot b+a\cdot c$ \end_inset . \end_layout \begin_layout Standard De aquí podemos deducir que: \end_layout \begin_layout Enumerate \begin_inset Formula $a=b\iff a-b=0$ \end_inset ; \begin_inset Formula $b\neq0\implies(a=b\iff a\cdot b^{-1}=1)$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ a=b\iff a+(-b)=b+(-b)\iff a-b=0 \] \end_inset \begin_inset Formula \[ b\neq0\implies\exists b^{-1}\implies(a=b\iff a\cdot b^{-1}=b\cdot b^{-1}=1) \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $a\cdot0=0$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ a\cdot0+0=a\cdot0=a\cdot(0+0)=a\cdot0+a\cdot0\implies-a\cdot0+a\cdot0=-a\cdot0+a\cdot0+a\cdot0\implies0=a\cdot0 \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $(-a)\cdot b=-(ab)$ \end_inset ; \begin_inset Formula $(-1)\cdot a=-a$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ (-a)\cdot b+a\cdot b=(-a+a)\cdot b=0\cdot b=0 \] \end_inset \begin_inset Formula \[ (-1)\cdot a=-(1\cdot a)=-a \] \end_inset \end_layout \end_inset \end_layout \begin_layout Subsection Totalmente ordenado \end_layout \begin_layout Standard Aquel con relación binaria \begin_inset Formula $\leq$ \end_inset con las siguientes propiedades: \begin_inset Formula $\forall x,y,z\in\mathbb{K}$ \end_inset : \end_layout \begin_layout Enumerate \series bold Reflexiva: \series default \begin_inset Formula $x\leq x$ \end_inset . \end_layout \begin_layout Enumerate \series bold Antisimétrica: \series default \begin_inset Formula $x\leq y\land y\leq x\iff x=y$ \end_inset . \end_layout \begin_layout Enumerate \series bold Transitiva: \series default \begin_inset Formula $x\leq y\land y\leq z\implies x\leq z$ \end_inset . \end_layout \begin_layout Enumerate \series bold Orden total: \series default \begin_inset Formula $x\leq y\lor y\leq x$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $x\leq y\implies x+z\leq y+z$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $x\leq y\land0\leq z\implies x\cdot z\leq y\cdot z$ \end_inset . \end_layout \begin_layout Standard Una relación binaria que cumple las propiedades 1–3 se denomina de \series bold orden. \series default Si también cumple (4), de \series bold orden total. \series default El conjunto de todas definen un \series bold cuerpo totalmente ordenado. \end_layout \begin_layout Standard Notación: \begin_inset Formula $xx\iff x\leq y\land x\neq y$ \end_inset ; \begin_inset Formula $x\geq y\iff y\leq x$ \end_inset . \end_layout \begin_layout Standard Podemos deducir que: \end_layout \begin_layout Enumerate \begin_inset Formula $c<0\iff-c>0$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ c<0\iff c+(-c)<-c\iff0<-c \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $a\leq b\land c\leq d\implies a+c\leq b+d$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ \begin{array}{c} a\leq b\implies a+c\leq b+c\\ c\leq d\implies b+c\leq b+d \end{array}\implies a+c\leq b+d \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $a\leq b\iff-a\geq-b$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ a\leq b\iff a+(-a)+(-b)\leq b+(-b)+(-a)\iff-b\leq-a \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $c<0\implies(a\leq b\iff ca\geq cb)$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ c<0\implies-c>0\implies(-c)a\leq(-c)b\implies-(ca)\leq-(cb)\implies ca\geq cb \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $a\neq0\implies a\cdot a>0$ \end_inset ; \begin_inset Formula $1\neq0\implies1\geq0$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ a\cdot a\neq0;\ \begin{cases} a\geq0 & \implies a\cdot a\geq a\cdot0=0\\ a\leq0 & \implies a\cdot a\geq a\cdot0=0 \end{cases}\implies a\cdot a>0 \] \end_inset \begin_inset Formula \[ 0\neq1\land1=1\cdot1\implies1>0 \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $a>0\iff a^{-1}>0$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout Supongamos \begin_inset Formula $a^{-1}\leq0$ \end_inset y \begin_inset Formula $a>0$ \end_inset . Entonces, \begin_inset Formula $1=a\cdot a^{-1}\leq0$ \end_inset . Pero \begin_inset Formula $1\nleq0\#$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $b>0\implies(a\leq b\implies a^{-1}\leq b^{-1})$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ a\geq b\implies a^{-1}\cdot a\geq b\cdot a^{-1}\implies1\geq b\cdot a^{-1}\implies b^{-1}\geq b^{-1}(b\cdot a^{-1})=a^{-1}\implies b^{-1}\geq a^{-1} \] \end_inset El recíproco es cierto si \begin_inset Formula $a>0$ \end_inset también, pues en el último paso multiplicaríamos por \begin_inset Formula $a$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Subsection Completo \end_layout \begin_layout Standard Aquel que cumple el \series bold axioma del supremo: \series default todo subconjunto no vacío de \begin_inset Formula $\mathbb{R}$ \end_inset acotado superiormente tiene supremo. Un conjunto \begin_inset Formula $\emptyset\neq A\subseteq\mathbb{R}$ \end_inset está acotado superiormente si \begin_inset Formula $\exists M\in\mathbb{R}:\forall a\in A,a\leq M$ \end_inset , entonces \begin_inset Formula $M$ \end_inset es cota superior de \begin_inset Formula $A$ \end_inset . \begin_inset Formula $\alpha\in\mathbb{R}$ \end_inset es el supremo de \begin_inset Formula $A$ \end_inset ( \begin_inset Formula $\alpha=\sup A$ \end_inset ) si es su menor cota superior, y cumple que \begin_inset Formula $\forall\varepsilon>0,\exists a\in A:\alpha-\varepsilonn\implies\exists k\in\mathbb{N}:m=n+k$ \end_inset . \end_layout \begin_layout Standard Definimos \begin_inset Formula $\mathbb{Z}\coloneqq \{0\}\cup\{n\in\mathbb{R}\mid n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$ \end_inset y \begin_inset Formula $\mathbb{Q}\coloneqq \{m\cdot n^{-1}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$ \end_inset . \end_layout \begin_layout Subsection Método de inducción \end_layout \begin_layout Standard Método de demostración basado en definir un conjunto \begin_inset Formula $S\subseteq\mathbb{N}$ \end_inset que cumpla la propiedad \begin_inset Formula $P(n)$ \end_inset a demostrar en \begin_inset Formula $\mathbb{N}$ \end_inset y demostrar que es inductivo. Como \begin_inset Formula $\mathbb{N}$ \end_inset es el conjunto inductivo más pequeño, tenemos \begin_inset Formula $S=\mathbb{N}$ \end_inset . Para demostrar esto: \end_layout \begin_layout Enumerate Comprobamos que \begin_inset Formula $P(1)$ \end_inset es verdad. \end_layout \begin_layout Enumerate Demostramos que \begin_inset Formula $P(n)\implies P(n+1)$ \end_inset . Para ello, demostramos \begin_inset Formula $P(n+1)$ \end_inset tomando como propiedad \begin_inset Formula $P(n)$ \end_inset (la \series bold hipótesis de inducción \series default ). \end_layout \begin_layout Standard Dado un número natural \begin_inset Formula $N$ \end_inset , un conjunto \begin_inset Formula $S\subseteq\{n\in\mathbb{N}\mid n\geq N\}\subseteq\mathbb{N}$ \end_inset nos sirve para realizar demostraciones para los naturales a partir de un número arbitrario. Por último, la \series bold versión fuerte \series default del método de inducción nos permite definir \begin_inset Formula $S$ \end_inset tal que \begin_inset Formula $1\in S$ \end_inset y \begin_inset Formula $1,2,\dots,n\in S\implies n+1\in S$ \end_inset , y entonces \begin_inset Formula $S=\mathbb{N}$ \end_inset . \end_layout \begin_layout Standard \begin_inset Note Comment status open \begin_layout Plain Layout De esta forma podemos demostrar el \series bold Teorema Fundamental de la Aritmética \series default , que nos dice que todo número entero \begin_inset Formula $n\geq2$ \end_inset es primo o producto de primos. \series bold Demostración: \series default Sea \begin_inset Formula $A=\{2\leq n\in\mathbb{N}\mid n\text{ cumple el Teorema Fund. de la Aritmética}\}$ \end_inset . Sabemos que \begin_inset Formula $2\in A$ \end_inset , y queremos demostrar que, si tenemos un \begin_inset Formula $n\in\mathbb{N}$ \end_inset tal que \begin_inset Formula $2,3,\dots,n\in A$ \end_inset , entonces \begin_inset Formula $n+1\in A$ \end_inset . Ahora, o bien \begin_inset Formula $n+1$ \end_inset es primo, en cuyo caso \begin_inset Formula $n+1\in A$ \end_inset , o no lo es, pero entonces \begin_inset Formula $\exists p,q\in\mathbb{N}:1x\}\neq\emptyset$ \end_inset , por lo que tiene un primer elemento \begin_inset Formula $k\in\mathbb{N}$ \end_inset . Si tomamos \begin_inset Formula $m\coloneqq k-1$ \end_inset obtenemos el resultado. La unicidad se debe a que no existe ningún número natural entre \begin_inset Formula $1$ \end_inset y \begin_inset Formula $2$ \end_inset y, por inducción, tampoco entre \begin_inset Formula $m$ \end_inset y \begin_inset Formula $m+1$ \end_inset para ningún \begin_inset Formula $m\in\mathbb{N}$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Standard De aquí podemos obtener que \begin_inset Formula $\mathbb{Q}$ \end_inset es \series bold denso \series default en \begin_inset Formula $\mathbb{R}$ \end_inset , es decir, que si \begin_inset Formula $x,y\in\mathbb{R}$ \end_inset con \begin_inset Formula $x3\cdot(1+\varepsilon)^{n}-2\overset{?}{>}(1+\varepsilon)^{n} \] \end_inset \end_layout \begin_layout Plain Layout La última desigualdad se cumple siempre que \begin_inset Formula $2\cdot(1+\varepsilon)^{n}>2$ \end_inset y por tanto \begin_inset Formula $(1+\varepsilon)^{n}>1$ \end_inset , lo cual es verdad, demostrando la fórmula inicial. Ahora usaremos esta fórmula para demostrar que si \begin_inset Formula $r\in\mathbb{Q}$ \end_inset con \begin_inset Formula $r>0$ \end_inset y \begin_inset Formula $r^{2}<2$ \end_inset , existe un \begin_inset Formula $t\in\mathbb{Q}$ \end_inset tal que \begin_inset Formula $r0$ \end_inset y \begin_inset Formula $s^{2}>2$ \end_inset , existe \begin_inset Formula $w\in\mathbb{Q}$ \end_inset tal que \begin_inset Formula $0w^{2}>2$ \end_inset . \end_layout \begin_layout Plain Layout Para demostrar la primera afirmación debemos ver que es posible encontrar \begin_inset Formula $0<\varepsilon\in\mathbb{Q}$ \end_inset tal que si \begin_inset Formula $t\coloneqq r(1+\varepsilon)$ \end_inset se tenga \begin_inset Formula $t^{2}<2$ \end_inset . Pero usando la afirmación anterior tenemos que \begin_inset Formula $t^{2}=r^{2}(1+\varepsilon)^{2}2$ \end_inset , \begin_inset Formula $\exists s\in\mathbb{Q}:\alpha>s\land s^{2}>2$ \end_inset , por lo que \begin_inset Formula $2x$ \end_inset , \begin_inset Formula $x$ \end_inset sería una cota superior menor \begin_inset Formula $\#$ \end_inset , y si fuera menor, entonces \begin_inset Formula $\exists r\in\mathbb{Q}:\alpha0$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $|x|=\max\{x,-x\}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $|xy|=|x||y|$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\left|\frac{1}{x}\right|=\frac{1}{|x|}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $|x|\leq a\iff-a\leq x\leq a$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ |x|=\max\{x,-x\}\leq a\equiv x\leq a\land-x\leq a\equiv-a\leq x\leq a \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Desigualdad triangular: \series default \begin_inset Formula $|x+y|\leq|x|+|y|$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ \begin{array}{c} -|x|\leq x\leq|x|\\ -|y|\leq y\leq|y| \end{array}\implies-(|x|+|y|)\leq x+y\leq(|x|+|y|)\overset{(5)}{\implies}|x+y|\leq|x|+|y| \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $\left||x|-|y|\right|\leq|x-y|$ \end_inset . \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \[ \begin{array}{cc} z:=y-x: & |x+z|\leq|x|+|z|\implies|x+y-x|=|y|\leq|x|+|y-x|\implies\\ & \implies|y|-|x|\leq|y-x|\\ z':=x-y: & |y+z'|\leq|y|+|z'|\implies|y+x-y|=|x|\leq|y|+|x-y|\implies\\ & \implies|x|-|y|\leq|x-y| \end{array} \] \end_inset \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $\left|\sum_{k=1}^{n}x_{k}\right|\leq\sum_{k=1}^{n}|x_{k}|$ \end_inset . \begin_inset Newline newline \end_inset \begin_inset Note Comment status open \begin_layout Plain Layout Se obtiene por inducción sobre la desigualdad triangular. \end_layout \end_inset \end_layout \begin_layout Standard \series bold Distancia \series default de \begin_inset Formula $x$ \end_inset a \begin_inset Formula $y$ \end_inset : \begin_inset Formula $d(x,y)\coloneqq |x-y|$ \end_inset . Propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $d(x,y)=0\iff x=y$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $d(x,y)=d(y,x)$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)$ \end_inset . \end_layout \begin_layout Subsection Raíces \begin_inset Formula $n$ \end_inset -ésimas \end_layout \begin_layout Standard Sea \begin_inset Formula $x\in\mathbb{R}$ \end_inset , \begin_inset Formula $x>0$ \end_inset y sea \begin_inset Formula $p\in\mathbb{N}$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $\forall r\in\mathbb{Q},r>0,r^{p}0,s^{p}>x,\exists w\in\mathbb{Q}:(0w^{p}>x)$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\exists!\alpha\in\mathbb{R},\alpha>0:\alpha^{p}=x$ \end_inset ; \begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}\mid r^{p}