#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style swiss \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Una \series bold partición \series default de \begin_inset Formula $[a,b]$ \end_inset es una colección de puntos \begin_inset Formula $a=t_{0}0,\exists\pi\in{\cal P}([a,b]):S(f,\pi)-s(f,\pi)<\varepsilon$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Dado \begin_inset Formula $\varepsilon>0$ \end_inset , como \begin_inset Formula $\int_{a}^{b}f=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}$ \end_inset , existe \begin_inset Formula $\pi_{1}\in{\cal P}([a,b])$ \end_inset con \begin_inset Formula $0\leq S(f,\pi_{1})-\int_{a}^{b}f<\frac{\varepsilon}{2}$ \end_inset , y análogamente existe \begin_inset Formula $\pi_{2}\in{\cal P}([a,b])$ \end_inset con \begin_inset Formula $0\leq\int_{a}^{b}f-s(f,\pi_{2})<\frac{\varepsilon}{2}$ \end_inset . Entonces \begin_inset Formula $\pi\coloneqq \pi_{1}\lor\pi_{2}$ \end_inset cumple ambas desigualdades, pues \begin_inset Formula $S(f,\pi)\leq S(f,\pi_{1})$ \end_inset y \begin_inset Formula $s(f,\pi)\geq s(f,\pi_{2})$ \end_inset , y sumándolas obtenemos \begin_inset Formula $S(f,\pi)-s(f,\pi)<\varepsilon$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Dado \begin_inset Formula $\varepsilon>0$ \end_inset y \begin_inset Formula $\pi_{\varepsilon}\in{\cal P}([a,b])$ \end_inset con \begin_inset Formula $S(f,\pi_{\varepsilon})-s(f,\pi_{\varepsilon})<\varepsilon$ \end_inset , por la definición de integral superior e inferior, \begin_inset Formula $0\leq\overline{\int_{a}^{b}}f-\underline{\int_{a}^{b}}f\leq S(f,\pi_{\varepsilon})-s(f,\pi_{\varepsilon})\leq\varepsilon$ \end_inset , lo que para \begin_inset Formula $\varepsilon$ \end_inset arbitrario implica que las integrales superior e inferior coinciden. \end_layout \begin_layout Standard \begin_inset Formula $f\in{\cal R}[a,b]\iff\exists!\alpha\in\mathbb{R}:\forall\pi\in{\cal P}([a,b]),s(f,\pi)\leq\alpha\leq S(f,\pi)$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Sea \begin_inset Formula $\alpha\coloneqq \int_{a}^{b}f$ \end_inset , para toda \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset , \begin_inset Formula $s(f,\pi)\leq\alpha\leq S(f,\pi)$ \end_inset . Si existiera \begin_inset Formula $\beta\neq\alpha$ \end_inset que cumpliera la condición, como \begin_inset Formula $\alpha=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])}$ \end_inset se tendría \begin_inset Formula $\beta>\alpha$ \end_inset , pero análogamente que \begin_inset Formula $\beta<\alpha$ \end_inset . \begin_inset Formula $\#$ \end_inset \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Supongamos que existe un \begin_inset Formula $\alpha$ \end_inset que verifica la condición pero \begin_inset Formula $f\notin{\cal R}[a,b]$ \end_inset . Entonces para cualquier \begin_inset Formula $\pi\in{\cal R}[a,b]$ \end_inset se tiene \begin_inset Formula $s(f,\pi)\leq\underline{\int_{a}^{b}}f<\overline{\int_{a}^{b}}f\leq S(f,\pi)$ \end_inset , por lo que existen infinitos números reales que verifican la condición y por tanto \begin_inset Formula $\alpha$ \end_inset no es único. \begin_inset Formula $\#$ \end_inset \end_layout \begin_layout Standard Otro \series bold teorema \series default importante es que las funciones \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset continuas son integrables en \begin_inset Formula $[a,b]$ \end_inset , y además, dados \begin_inset Formula $z_{k,n}\in[a+\frac{b-a}{n}(k-1),a+\frac{b-a}{n}k]$ \end_inset cualesquiera, \begin_inset Formula \[ \lim_{n\rightarrow\infty}\frac{b-a}{n}\sum_{k=1}^{n}f(z_{k,n})=\int_{a}^{b}f \] \end_inset \end_layout \begin_layout Standard \series bold Demostración: \series default Dado \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset , \begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})$ \end_inset . Ahora bien, dado \begin_inset Formula $\varepsilon>0$ \end_inset , como \begin_inset Formula $f$ \end_inset es continua en \begin_inset Formula $[a,b]$ \end_inset también es uniformemente continua, luego existe \begin_inset Formula $\delta>0$ \end_inset tal que si \begin_inset Formula $|x-y|<\delta$ \end_inset entonces \begin_inset Formula $|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)}$ \end_inset . Sea \begin_inset Formula $n_{0}\in\mathbb{N}$ \end_inset con \begin_inset Formula $\frac{b-a}{n_{0}}<\delta$ \end_inset . Para todo \begin_inset Formula $n\in\mathbb{N}$ \end_inset definimos \begin_inset Formula $\pi_{n}=(a0$ \end_inset , existe \begin_inset Formula $n_{0}\in\mathbb{N}$ \end_inset tal que si \begin_inset Formula $n\geq n_{0}$ \end_inset entonces \begin_inset Formula $S(f,\pi_{n})-s(f,\pi_{n})<\frac{\varepsilon}{2}$ \end_inset , de modo que \begin_inset Formula $S(f,\pi_{n})-\alpha\leq\frac{\varepsilon}{2}$ \end_inset y \begin_inset Formula $S(f,\pi_{n})-a_{n}<\frac{\varepsilon}{2}$ \end_inset , y entonces \begin_inset Formula $|a_{n}-\alpha|\leq|a_{n}-S(f,\pi_{n})|+|S(f,\pi_{n})-\alpha|<\varepsilon$ \end_inset . \end_layout \begin_layout Standard Dada \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset monótona y acotada entonces \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset . \series bold Demostración: \series default Dada \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset , \begin_inset Formula $S(f,\pi)-s(f,\pi)=\sum_{i=1}^{n}(M_{i}-m_{i})(t_{i}-t_{i-1})$ \end_inset , y dado \begin_inset Formula $\varepsilon>0$ \end_inset , si por ejemplo \begin_inset Formula $f$ \end_inset es monótona creciente y \begin_inset Formula $f(a)a$ \end_inset entonces \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset . \series bold Demostración: \series default Sea \begin_inset Formula $A>0$ \end_inset con \begin_inset Formula $|f(x)|\leq A\forall x\in[a,b]$ \end_inset , entonces \begin_inset Formula $-A\leq\inf\{f(x)\}_{x\in[a,b]}\leq\sup\{f(x)\}_{x\in[a,b]}\leq A$ \end_inset . Dado \begin_inset Formula $\varepsilon>0$ \end_inset , sea \begin_inset Formula $c\in(a,b]$ \end_inset con \begin_inset Formula $c-a<\frac{\varepsilon}{4A}$ \end_inset y \begin_inset Formula $\pi\in{\cal P}([c,b])$ \end_inset con \begin_inset Formula $S(f,\pi)-s(f,\pi)<\frac{\varepsilon}{2}$ \end_inset , si tomamos \begin_inset Formula $\pi'\in{\cal P}([a,b])$ \end_inset resultado de añadir a \begin_inset Formula $\pi$ \end_inset el intervalo \begin_inset Formula $[a,c]$ \end_inset con \begin_inset Formula $M_{1}=\sup\{f(x)\}_{x\in[a,c]}$ \end_inset y \begin_inset Formula $m_{1}=\inf\{f(x)\}_{x\in[a,c]}$ \end_inset , entonces \begin_inset Formula $S(f,\pi')-s(f,\pi')=M_{1}(c-a)+S(f,\pi)-m_{1}(c-a)-s(f,\pi)\leq2A(c-a)+S(f,\pi)-s(f,\pi)\leq2A(c-a)+\frac{\varepsilon}{2}<2A\frac{\varepsilon}{4A}+\frac{\varepsilon}{2}=\varepsilon$ \end_inset . \end_layout \begin_layout Section Sumas de Riemann \end_layout \begin_layout Standard Sea \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset y \begin_inset Formula $\pi\equiv(t_{0}<\dots0$ \end_inset existe \begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ \end_inset tal que si \begin_inset Formula $\pi_{0}\prec\pi$ \end_inset , para cualesquiera \begin_inset Formula $z_{i}\in[t_{i-1},t_{i}]$ \end_inset se cumple \begin_inset Formula $|A-S(f,\pi,z_{i})|<\varepsilon$ \end_inset , y entonces \begin_inset Formula $A=\int_{a}^{b}f$ \end_inset . \begin_inset Note Comment status open \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Sea \begin_inset Formula $A=\int_{a}^{b}f$ \end_inset , fijado \begin_inset Formula $\varepsilon>0$ \end_inset , sea \begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ \end_inset con \begin_inset Formula $S(f,\pi_{0})-s(f,\pi_{0})<\varepsilon$ \end_inset , si \begin_inset Formula $\pi_{0}\prec\pi$ \end_inset entonces \begin_inset Formula $S(f,\pi)-s(f,\pi)\leq S(f,\pi_{0})-s(f,\pi_{0})<\varepsilon$ \end_inset , \begin_inset Formula $s(f,\pi)\leq S(f,\pi,z_{i})\leq S(f,\pi)$ \end_inset y \begin_inset Formula $s(f,\pi)\leq A\leq S(f,\pi)$ \end_inset . Pero esto implica que \begin_inset Formula $0\leq A-s(f,\pi)\leq S(f,\pi)-s(f,\pi)\leq\varepsilon$ \end_inset , \begin_inset Formula $A-S(f,\pi,z_{i})\leq S(f,\pi)-s(f,\pi)\leq\varepsilon$ \end_inset y \begin_inset Formula $S(f,\pi,z_{i})-A\geq s(f,\pi)-S(f,\pi)\geq-\varepsilon$ \end_inset , con lo que \begin_inset Formula $|A-S(f,\pi,z_{i})|<\varepsilon$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Dado \begin_inset Formula $\varepsilon>0$ \end_inset , sea \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset con \begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ \end_inset para puntos \begin_inset Formula $z_{i}$ \end_inset con \begin_inset Formula $M_{i}-f(z_{i})<\frac{\varepsilon}{2(b-a)}$ \end_inset , entonces \begin_inset Formula $S(f,\pi)-S(f,\pi,z_{i})=\sum_{i=1}^{n}(M_{i}-f(z_{i}))(t_{i}-t_{i-1})\leq\sum_{i=1}^{n}\frac{\varepsilon}{2(b-a)}(t_{i}-t_{i-1})=\frac{\varepsilon}{2}$ \end_inset , y como \begin_inset Formula $|A-S(f,\pi,z_{i})|<\frac{\varepsilon}{2}$ \end_inset entonces \begin_inset Formula $|A-S(f,\pi)|<\varepsilon$ \end_inset . Análogamente se tiene que \begin_inset Formula $|A-s(f,\pi)|<\varepsilon$ \end_inset . Por tanto \begin_inset Formula $|S(f,\pi)-s(f,\pi)|<2\varepsilon$ \end_inset y \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset . \begin_inset Newline newline \end_inset Queda ver que \begin_inset Formula $A=\int_{a}^{b}f$ \end_inset . Supongamos que existe \begin_inset Formula $\pi_{0}$ \end_inset con \begin_inset Formula $s(f,\pi_{0})\leq S(f,\pi_{0})A-\frac{\varepsilon}{2}=\frac{A+S(f,\pi_{0})}{2}>S(f,\pi_{0})$ \end_inset , pero al mismo tiempo \begin_inset Formula $S(f,\pi',z_{i})0$ \end_inset existe una sucesión \begin_inset Formula $I_{n}$ \end_inset de intervalos cerrados y acotados con \begin_inset Formula $A\subseteq\bigcup_{n}I_{n}$ \end_inset y \begin_inset Formula $\sum_{n=1}^{\infty}\text{long}(I_{n})\leq\varepsilon$ \end_inset , donde \begin_inset Formula $\text{long}([a,b])\coloneqq b-a$ \end_inset . Si \begin_inset Formula $A$ \end_inset tiene medida cero y \begin_inset Formula $B\subseteq A$ \end_inset entonces \begin_inset Formula $B$ \end_inset tiene medida cero, y si \begin_inset Formula $A$ \end_inset es numerable tiene medida cero tomando, para cada \begin_inset Formula $\varepsilon>0$ \end_inset , la sucesión con \begin_inset Formula $I_{n}=\{x_{n}-\frac{\varepsilon}{2^{n+1}},x_{n}+\frac{\varepsilon}{2^{n+1}}\}$ \end_inset , pues \begin_inset Formula $\sum_{n}\text{long}(I_{n})=\sum_{n}\frac{\varepsilon}{2^{n}}=\varepsilon$ \end_inset . \end_layout \begin_layout Standard El \series bold teorema de Lebesgue \series default afirma que dada una función acotada \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset , si \begin_inset Formula $D(f)\subseteq[a,b]$ \end_inset es el conjunto de puntos en los que \begin_inset Formula $f$ \end_inset no es continua, entonces \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset si y sólo si \begin_inset Formula $D(f)$ \end_inset tiene medida cero. \end_layout \begin_layout Standard Sea \begin_inset Formula $\pi=(t_{0}<\dots0,\exists\pi_{0}\in{\cal P}([a,b]):\forall\pi\succ\pi_{0},|A-S(f,\pi,z_{i})|<\varepsilon$ \end_inset para cualquier suma de Riemann correspondiente a \begin_inset Formula $\pi$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\exists A\in\mathbb{R}:\forall\varepsilon>0,\exists\delta>0:\forall\pi:\Vert\pi\Vert<\delta,|A-S(f,\pi,z_{i})|<\varepsilon$ \end_inset para cualquier suma de Riemann correspondiente a \begin_inset Formula $\pi$ \end_inset . \end_layout \begin_layout Section Propiedades \end_layout \begin_layout Description Linealidad \begin_inset Formula ${\cal R}[a,b]$ \end_inset es un \begin_inset Formula $\mathbb{R}$ \end_inset -espacio vectorial y el operador \begin_inset Formula $\int_{a}^{b}$ \end_inset es lineal. \begin_inset Newline newline \end_inset Sean \begin_inset Formula $f,g\in{\cal R}[a,b]$ \end_inset , dado \begin_inset Formula $\varepsilon>0$ \end_inset existe \begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ \end_inset tal que para \begin_inset Formula $\pi_{0}\prec\pi$ \end_inset se tienen \begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|,\left|\int_{a}^{b}g-S(g,\pi,z_{i})\right|<\frac{\varepsilon}{2}$ \end_inset , por lo que \begin_inset Formula \[ \left|\int_{a}^{b}f+\int_{a}^{b}g-S(f+g,\pi,z_{i})\right|<\varepsilon \] \end_inset con lo que \begin_inset Formula $\int_{a}^{b}(f+g)=\int_{a}^{b}f+\int_{a}^{b}g$ \end_inset . Sea ahora \begin_inset Formula $k\in\mathbb{R}$ \end_inset , dado \begin_inset Formula $\varepsilon>0$ \end_inset y \begin_inset Formula $\pi_{0}\in{\cal P}([a,b])$ \end_inset tal que para \begin_inset Formula $\pi_{0}\prec\pi$ \end_inset se cumple \begin_inset Formula $\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<\frac{\varepsilon}{1+|k|}$ \end_inset , entonces \begin_inset Formula \[ \left|k\int_{a}^{b}f-S(kf,\pi,z_{i})\right|=|k|\left|\int_{a}^{b}f-S(f,\pi,z_{i})\right|<|k|\frac{\varepsilon}{1+|k|}<\varepsilon \] \end_inset luego \begin_inset Formula $\int_{a}^{b}kf=k\int_{a}^{b}f$ \end_inset . \end_layout \begin_layout Description Producto Si \begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ \end_inset son integrables Riemann, también lo es \begin_inset Formula $fg$ \end_inset . \begin_inset Newline newline \end_inset Por el teorema de Lebesgue, si \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset , tendrá medida cero, pero \begin_inset Formula $D(f^{2})\subseteq D(f)$ \end_inset , pues si \begin_inset Formula $f$ \end_inset es continua en un punto también lo es \begin_inset Formula $f^{2}$ \end_inset . Entonces \begin_inset Formula $D(f^{2})$ \end_inset tiene medida cero, lo que nos da la integrabilidad de \begin_inset Formula $f^{2}$ \end_inset . El caso general se sigue de que \begin_inset Formula $fg=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$ \end_inset por la linealidad. \end_layout \begin_layout Description Monotonía Si \begin_inset Formula $f(x)\leq g(x)$ \end_inset para todo \begin_inset Formula $x\in[a,b]$ \end_inset entonces \begin_inset Formula $\int_{a}^{b}f\leq\int_{a}^{b}g$ \end_inset , y en particular si \begin_inset Formula $m\leq f(x)\leq M$ \end_inset para todo \begin_inset Formula $x\in[a,b]$ \end_inset , entonces \begin_inset Formula $m(b-a)\leq\int_{a}^{b}f\leq M(b-a)$ \end_inset . \begin_inset Newline newline \end_inset Para \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset se tiene \begin_inset Formula $s(f,\pi)\leq s(g,\pi)$ \end_inset , y tomando supremos, \begin_inset Formula $\int_{a}^{b}f\leq\int_{a}^{b}g$ \end_inset . \end_layout \begin_layout Description Valor \begin_inset space ~ \end_inset medio Sea \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset continua, existe \begin_inset Formula $c\in[a,b]$ \end_inset con \begin_inset Formula $f(c)=\frac{1}{b-a}\int_{a}^{b}f$ \end_inset . \begin_inset Newline newline \end_inset Por el teorema de Weierstrass, existen \begin_inset Formula $c_{1},c_{2}\in[a,b]$ \end_inset con \begin_inset Formula $f(c_{1})\leq f(x)\leq f(c_{2})$ \end_inset para todo \begin_inset Formula $x\in[a,b]$ \end_inset , y por la monotonía de la integral, \begin_inset Formula $f(c_{1})\leq\frac{1}{b-a}\int_{a}^{b}f\leq f(c_{2})$ \end_inset . Entonces, aplicando la propiedad de los valores intermedios, existe \begin_inset Formula $c\in[a,b]$ \end_inset con \begin_inset Formula $f(c)=\frac{1}{b-a}\int_{a}^{b}f$ \end_inset . \end_layout \begin_layout Description Valor \begin_inset space ~ \end_inset absoluto Si \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset entonces \begin_inset Formula $|f|\in{\cal R}[a,b]$ \end_inset y \begin_inset Formula $\left|\int_{a}^{b}f\right|\leq\int_{a}^{b}|f|$ \end_inset . \begin_inset Newline newline \end_inset Dado \begin_inset Formula $\varepsilon>0$ \end_inset , sea \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset con \begin_inset Formula $S(f,\pi)-s(f,\pi)<\varepsilon$ \end_inset , si \begin_inset Formula $M'_{i}$ \end_inset y \begin_inset Formula $m'_{i}$ \end_inset son el supremo y el ínfimo, respectivamente, de \begin_inset Formula $|f|$ \end_inset en \begin_inset Formula $[t_{i-1},t_{i}]$ \end_inset , y \begin_inset Formula $M_{i}$ \end_inset y \begin_inset Formula $m_{i}$ \end_inset son los de \begin_inset Formula $f$ \end_inset , entonces para \begin_inset Formula $z,w\in[t_{i-1},t_{i}]$ \end_inset se tiene que \begin_inset Formula $||f(z)|-|f(w)||\leq|f(z)-f(w)|\leq M_{i}-m_{i}$ \end_inset , por lo que \begin_inset Formula $\sup\{|f(z)|-|f(w)|\}_{z,w\in[t_{i-1},t_{i}]}=M'_{i}-m'_{i}\leq M_{i}-m_{i}$ \end_inset y entonces \begin_inset Formula $S(|f|,\pi)-s(|f|,\pi)\leq S(f,\pi)-s(f,\pi)<\varepsilon$ \end_inset , con lo que \begin_inset Formula $|f|\in{\cal R}[a,b]$ \end_inset . Ahora bien, \begin_inset Formula $-|f(x)|\leq f(x)\leq|f(x)|$ \end_inset para todo \begin_inset Formula $x\in[a,b]$ \end_inset , con lo que \begin_inset Formula $\int_{a}^{b}-|f|=-\int_{a}^{b}|f|\leq\int_{a}^{b}f\leq\int_{a}^{b}|f|$ \end_inset . \end_layout \begin_layout Description Aditividad \begin_inset space ~ \end_inset respecto \begin_inset space ~ \end_inset de \begin_inset space ~ \end_inset intervalo Dada \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset acotada y \begin_inset Formula $c\in[a,b]$ \end_inset , \begin_inset Formula $f\in{\cal R}[a,b]\iff f\in{\cal R}[a,c],{\cal R}[c,b]$ \end_inset , y además \begin_inset Formula $\int_{a}^{b}f=\int_{a}^{c}f+\int_{c}^{b}f$ \end_inset . \begin_inset Newline newline \end_inset Basta refinar una partición \begin_inset Formula $\pi\in{\cal P}([a,b])$ \end_inset añadiéndole el punto \begin_inset Formula $c$ \end_inset . \end_layout \begin_layout Description Discontinuidades Si \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset y \begin_inset Formula $g:[a,b]\rightarrow\mathbb{R}$ \end_inset coincide con \begin_inset Formula $f$ \end_inset salvo en un número finito de puntos, entonces \begin_inset Formula $g\in{\cal R}[a,b]$ \end_inset y \begin_inset Formula $\int_{a}^{b}f=\int_{a}^{b}g$ \end_inset . \begin_inset Newline newline \end_inset Supongamos que cambian en un punto \begin_inset Formula $c\in[a,b]$ \end_inset , y basta probar que \begin_inset Formula $h\coloneqq g-f$ \end_inset es integrable. Ahora bien, \begin_inset Formula $h$ \end_inset es nula en todos los puntos salvo en \begin_inset Formula $c$ \end_inset , por lo que dado \begin_inset Formula $\varepsilon>0$ \end_inset podemos tomar \begin_inset Formula $\pi\in{\cal P}[a,b]$ \end_inset con \begin_inset Formula $t_{i}-t_{i-1}\leq\frac{\varepsilon}{h(c)}$ \end_inset y entonces \begin_inset Formula $S(f,\pi,z_{i})\leq\varepsilon$ \end_inset . \end_layout \begin_layout Section El Teorema Fundamental del Cálculo \end_layout \begin_layout Standard Sea \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset , llamamos \series bold integral indefinida \series default de \begin_inset Formula $f$ \end_inset a la función \begin_inset Formula $F:[a,b]\rightarrow\mathbb{R}$ \end_inset con \begin_inset Formula $F(x)\coloneqq \int_{a}^{x}f$ \end_inset . El \series bold TEOREMA FUNDAMENTAL DEL CÁLCULO \series default afirma que, si \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset y \begin_inset Formula $F$ \end_inset es su integral indefinida, entonces \begin_inset Formula $F$ \end_inset es continua en \begin_inset Formula $[a,b]$ \end_inset y si \begin_inset Formula $f$ \end_inset es continua en \begin_inset Formula $c\in(a,b)$ \end_inset entonces \begin_inset Formula $F$ \end_inset es derivable en \begin_inset Formula $c$ \end_inset y \begin_inset Formula $F'(c)=f(c)$ \end_inset , y esto también ocurre con los extremos del intervalo y las correspondientes derivadas laterales. \end_layout \begin_layout Standard \series bold Demostración: \series default Sea \begin_inset Formula $M\coloneqq \sup\{|f(x)|\}_{x\in[a,b]}$ \end_inset , por las propiedades de la integral, \begin_inset Formula $|F(x)-F(y)|=\left|\int_{x}^{y}f\right|\leq M|x-y|$ \end_inset , por lo que \begin_inset Formula $F$ \end_inset es uniformemente continua en \begin_inset Formula $[a,b]$ \end_inset , pues dado \begin_inset Formula $\varepsilon>0$ \end_inset y \begin_inset Formula $\delta=\frac{\varepsilon}{M}$ \end_inset , si \begin_inset Formula $|x-y|\leq\delta$ \end_inset entonces \begin_inset Formula $|F(x)-F(y)|\leq\varepsilon$ \end_inset . Supongamos ahora que \begin_inset Formula $f$ \end_inset es continua en \begin_inset Formula $c\in(a,b)$ \end_inset . Sea \begin_inset Formula $h>0$ \end_inset con \begin_inset Formula $c+h\in[a,b]$ \end_inset , \begin_inset Formula \begin{multline*} \left|\frac{F(c+h)-F(c)}{h}-f(c)\right|=\left|\frac{\int_{a}^{c+h}f-\int_{a}^{c}f}{h}-\frac{1}{h}\int_{c}^{c+h}f(c)\right|=\left|\frac{1}{h}\int_{c}^{c+h}(f-f(c))\right|\leq\\ \leq\frac{1}{h}\sup\{|f(t)-f(c)|\}_{t\in[c,c+h]}|h|=\sup\{|f(t)-f(c)|\}_{t\in[c,c+h]} \end{multline*} \end_inset y como \begin_inset Formula $f$ \end_inset es continua en \begin_inset Formula $c$ \end_inset , el último miembro de la desigualdad tiende a 0 cuando \begin_inset Formula $h$ \end_inset tiende a 0, y lo mismo ocurre para \begin_inset Formula $h<0$ \end_inset . Por tanto \begin_inset Formula $F'(c)=\lim_{h\rightarrow0}\frac{F(c+h)-F(c)}{h}=f(c)$ \end_inset . \end_layout \begin_layout Standard Dada \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset , decimos que \begin_inset Formula $g:[a,b]\rightarrow\mathbb{R}$ \end_inset es una \series bold primitiva \series default de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $[a,b]$ \end_inset si \begin_inset Formula $g$ \end_inset es derivable en \begin_inset Formula $(a,b)$ \end_inset y para todo \begin_inset Formula $x\in(a,b)$ \end_inset se tiene \begin_inset Formula $g'(x)=f(x)$ \end_inset . Por el teorema fundamental del cálculo, toda \begin_inset Formula $f$ \end_inset continua en \begin_inset Formula $[a,b]$ \end_inset tiene primitivas en \begin_inset Formula $[a,b]$ \end_inset , donde la integral indefinida es una de ellas y el resto se obtienen sumando a esta una constante. \series bold Demostración: \series default Si \begin_inset Formula $F$ \end_inset es la integral indefinida de \begin_inset Formula $f$ \end_inset y \begin_inset Formula $g$ \end_inset es otra primitiva de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $[a,b]$ \end_inset , entonces \begin_inset Formula $(F-g)'(x)=F'(x)-g'(x)=f(x)-f(x)=0$ \end_inset para \begin_inset Formula $x\in(a,b)$ \end_inset , y por el teorema del valor medio, \begin_inset Formula $F-g$ \end_inset es constante. \end_layout \begin_layout Standard Como \series bold teorema \series default , la \series bold fórmula de Barrow \series default afirma que si \begin_inset Formula $f\in{\cal R}[a,b]$ \end_inset admite una primitiva \begin_inset Formula $g$ \end_inset en \begin_inset Formula $[a,b]$ \end_inset entonces \begin_inset Formula $\int_{a}^{b}f=g(b)-g(a)$ \end_inset . \series bold Demostración: \series default Dado \begin_inset Formula $\varepsilon>0$ \end_inset existe \begin_inset Formula $\pi\equiv(t_{0}<\dots0,a\neq1$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\cos u\,u'\,dx=\sin u+C$ \end_inset ; \begin_inset Formula $\int\sin u\,u'\,dx=-\cos u+C$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\cosh u\,u'\,dx=\sinh u+C$ \end_inset ; \begin_inset Formula $\int\sinh u\,u'\,dx=\cosh u+C$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{u'}{\sin^{2}u}dx=\int\frac{u'}{\sinh^{2}u}dx=-\cot u+C$ \end_inset ; \begin_inset Formula $\int\frac{u'}{\cos^{2}u}dx=\int\frac{u'}{\cosh^{2}u}dx=\tan u+C$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{u'}{1+u^{2}}dx=\arctan u+C$ \end_inset ; \begin_inset Formula $\int\frac{u'}{1-u^{2}}dx=\arg\tanh u+C$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{u'}{\sqrt{1-u^{2}}}dx=\arcsin u+C=-\arccos u+C'$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}+1}}dx=\arg\sinh u+C$ \end_inset ; \begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}-1}}dx=\arg\cosh u+C$ \end_inset . \end_layout \begin_layout Standard \begin_inset Formula \begin{eqnarray*} \cosh(x)=\frac{e^{x}+e^{-x}}{2} & \sinh(x)=\frac{e^{x}-e^{-x}}{2} & \cosh^{2}(x)-\sinh^{2}(x)=1\\ \arg\cosh(x)=\ln(x+\sqrt{x^{2}-1}) & \arg\sinh(x)=\ln(x+\sqrt{x^{2}+1}) & \arg\tanh(x)=\frac{1}{2}\ln\frac{1+x}{1-x} \end{eqnarray*} \end_inset \end_layout \begin_layout Subsection Integración por partes \end_layout \begin_layout Standard Sean \begin_inset Formula $f,g\in{\cal R}[a,b]$ \end_inset con primitivas respectivas \begin_inset Formula $F$ \end_inset y \begin_inset Formula $G$ \end_inset , \begin_inset Formula \[ \int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG \] \end_inset lo que suele escribirse como \begin_inset Formula $\int u\,dv=uv-\int v\,du$ \end_inset . \series bold Demostración: \series default \begin_inset Formula $(FG)'(x)=F'(x)G(x)+F(x)G'(x)=f(x)G(x)+F(x)g(x)$ \end_inset , y por la fórmula de Barrow, \begin_inset Formula $\int_{a}^{b}Fg+\int_{a}^{b}fG=\int_{a}^{b}(Fg+fG)=F(b)G(b)-F(a)G(a)$ \end_inset , luego \begin_inset Formula $\int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG$ \end_inset . \end_layout \begin_layout Subsection Cambio de variable \end_layout \begin_layout Standard Como \series bold teorema \series default , sea \begin_inset Formula $\varphi:[c,d]\rightarrow[a,b]\in{\cal C}^{1}[c,d]$ \end_inset con \begin_inset Formula $\varphi(c)=a$ \end_inset y \begin_inset Formula $\varphi(d)=b$ \end_inset , sea \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ \end_inset continua, entonces \begin_inset Formula \[ \int_{a}^{b}f=\int_{c}^{d}(f\circ\varphi)\varphi' \] \end_inset \end_layout \begin_layout Standard \series bold Demostración: \series default Si \begin_inset Formula $F$ \end_inset es una primitiva de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $[a,b]$ \end_inset entonces \begin_inset Formula $F\circ\varphi$ \end_inset lo es de \begin_inset Formula $(f\circ\varphi)\varphi'$ \end_inset en \begin_inset Formula $[c,d]$ \end_inset , luego \begin_inset Formula $\int_{a}^{b}f=F(b)-F(a)=F(\varphi(d))-F(\varphi(c))=(F\circ\varphi)(d)-(F\circ\varphi)(c)=\int_{c}^{d}(f\circ\varphi)\varphi'$ \end_inset . \end_layout \begin_layout Standard Esto da sentido a la notación de \begin_inset Formula $\int_{a}^{b}f(x)dx\coloneqq \int_{a}^{b}f$ \end_inset , porque entonces si \begin_inset Formula $x=\varphi(t)$ \end_inset es fácil recordar \begin_inset Formula $dx=\varphi'(t)dt$ \end_inset y entonces \begin_inset Formula \[ \int_{a}^{b}f(x)dx=\int_{c}^{d}f(\varphi(t))\varphi'(t)dt \] \end_inset \end_layout \begin_layout Subsection Funciones racionales \end_layout \begin_layout Standard Sean \begin_inset Formula $P(x)$ \end_inset y \begin_inset Formula $Q(x)$ \end_inset polinomios y queremos resolver \begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx$ \end_inset . Si el grado de \begin_inset Formula $P(x)$ \end_inset es mayor o igual que el de \begin_inset Formula $Q(x)$ \end_inset hacemos \begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx=\int C(x)dx+\int\frac{R(x)}{Q(x)}dx$ \end_inset para que el grado del numerador sea menor que el del denominador. Entonces descomponemos en fracciones simples. \end_layout \begin_layout Standard Descomponemos \begin_inset Formula $Q(x)$ \end_inset como \begin_inset Formula $Q(x)=\prod_{i=1}^{r}(x-a_{i})^{m_{i}}\prod_{i=1}^{s}(x^{2}+p_{i}x+q_{i})^{n_{i}}$ \end_inset , donde \begin_inset Formula $q_{i}>\frac{p_{i}^{2}}{4}$ \end_inset para que los factores sean irreducibles. Entonces (si el grado de \begin_inset Formula $P(x)$ \end_inset es menor que el de \begin_inset Formula $Q(x)$ \end_inset ) podemos expresar la fracción como \begin_inset Formula \[ \frac{P(x)}{Q(x)}=\sum_{i=1}^{r}\sum_{j=1}^{m_{i}}\frac{A_{ij}}{(x-a_{i})^{j}}+\sum_{i=1}^{M}\sum_{j=1}^{n_{i}}\frac{M_{ij}x+N_{ij}}{(x^{2}+p_{i}x+q_{i})^{j}} \] \end_inset Resolvemos los \begin_inset Formula $A_{k,i}$ \end_inset , \begin_inset Formula $M_{k,i}$ \end_inset , \begin_inset Formula $N_{k,i}$ \end_inset y nos queda hallar la integral de cada sumando como sigue: \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{A}{x-a}dx=A\ln|x-a|+C$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{A}{(x-a)^{n}}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C$ \end_inset , donde \begin_inset Formula $n\in2,3,\dots$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\int\frac{Mx+N}{x^{2}+px+q}dx=\frac{M}{2}\ln\left(\left(x+\frac{p}{2}\right)^{2}+c^{2}\right)+\frac{N-\frac{Mp}{2}}{c}\arctan\left(\frac{x+\frac{p}{2}}{c}\right)+C$ \end_inset , donde \begin_inset Formula $c=\frac{\sqrt{4q-p^{2}}}{2}$ \end_inset . \end_layout \begin_layout Subsection Funciones que contienen \begin_inset Formula $\cos x$ \end_inset y \begin_inset Formula $\sin x$ \end_inset \end_layout \begin_layout Standard En general, haremos \begin_inset Formula $t=\tan\frac{x}{2}$ \end_inset y entonces \begin_inset Formula \begin{eqnarray*} \cos x=\frac{\cos(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{1-\tan^{2}\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{1-t^{2}}{1+t^{2}}\\ \sin x=\frac{\sin(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{2\tan\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{2t}{1+t^{2}}\\ x=2\arctan t & \text{ y } & dx=\frac{2}{1+t^{2}}dt \end{eqnarray*} \end_inset \end_layout \begin_layout Standard Si la función es de la forma \begin_inset Formula $f(x)=g(\sin x)\cos x$ \end_inset , siendo \begin_inset Formula $g$ \end_inset una función racional, hacemos \begin_inset Formula $t=\sin x$ \end_inset , y si es \begin_inset Formula $f(x)=g(\cos x)\sin x$ \end_inset hacemos \begin_inset Formula $t=\cos x$ \end_inset . Si es \begin_inset Formula $f(x)=g(\tan x)$ \end_inset hacemos \begin_inset Formula $\tan x=t$ \end_inset , y podemos llegar a esta situación cuando al sustituir \begin_inset Formula $\sin x$ \end_inset por \begin_inset Formula $\cos x\tan x$ \end_inset quedan solo potencias pares de \begin_inset Formula $\cos x$ \end_inset , y hacemos \begin_inset Formula $\cos^{2}x=\frac{1}{1+\tan^{2}x}$ \end_inset . \end_layout \begin_layout Standard En el caso \begin_inset Formula $f(x)=\cos^{n}x\sin^{m}x$ \end_inset , si \begin_inset Formula $n$ \end_inset es impar hacemos \begin_inset Formula $t=\sin x$ \end_inset , si \begin_inset Formula $m$ \end_inset es impar, \begin_inset Formula $t=\cos x$ \end_inset , y si ambos son pares, usamos \begin_inset Formula $\cos^{2}x=\frac{1+\cos(2x)}{2}$ \end_inset y \begin_inset Formula $\sin^{2}x=\frac{1-\cos(2x)}{2}$ \end_inset para \begin_inset Quotes cld \end_inset reducir el grado \begin_inset Quotes crd \end_inset . \end_layout \begin_layout Subsection Funciones de la forma \begin_inset Formula $f(e^{x})$ \end_inset \end_layout \begin_layout Standard Hacemos el cambio \begin_inset Formula $t=e^{x}$ \end_inset y \begin_inset Formula $dt=e^{x}dx$ \end_inset , y esto también sirve para el coseno y seno hiperbólicos ( \begin_inset Formula $\cosh$ \end_inset y \begin_inset Formula $\sinh$ \end_inset ). \end_layout \begin_layout Subsection Funciones que contienen \begin_inset Formula $\sqrt{ax^{2}+2bx+c}$ \end_inset \end_layout \begin_layout Standard Llamamos \begin_inset Formula $d\coloneqq \frac{ac-b^{2}}{a}$ \end_inset y se tiene \begin_inset Formula $ax^{2}+2bx+c=a\left(x+\frac{b}{a}\right)^{2}+d$ \end_inset . Hacemos entonces el cambio de variable \begin_inset Formula $t=x+\frac{b}{a}$ \end_inset y a continuación: \end_layout \begin_layout Itemize Si \begin_inset Formula $a>0$ \end_inset y \begin_inset Formula $d>0$ \end_inset hacemos \begin_inset Formula $at^{2}=d\tan^{2}u$ \end_inset y entonces \begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{d\tan^{2}u+d}=\sqrt{d}\sqrt{1+\tan^{2}u}=\sqrt{d}\sqrt{\sec^{2}u}=\sqrt{d}\sec u$ \end_inset y \begin_inset Formula $dt=\sqrt{\frac{d}{a}}\sec^{2}u\,du$ \end_inset . También podemos hacer \begin_inset Formula $at^{2}=d\sinh^{2}u$ \end_inset y entonces \begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{d\sinh^{2}u+d}=\sqrt{d}\sqrt{\sinh^{2}u+1}=\sqrt{d}\cosh u$ \end_inset y \begin_inset Formula $dt=\sqrt{\frac{d}{a}}\cosh u\,du$ \end_inset . \end_layout \begin_layout Itemize \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{sloppypar} \end_layout \end_inset Si \begin_inset Formula $a>0$ \end_inset y \begin_inset Formula $d<0$ \end_inset hacemos \begin_inset Formula $at^{2}=-d\sec^{2}u$ \end_inset y entonces \begin_inset Formula $\sqrt{-d\sec^{2}u+d}=\sqrt{-d}\sqrt{\sec^{2}u+1}=\sqrt{-d}\tan u$ \end_inset y \begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sec u\tan u\,du$ \end_inset . También podemos hacer \begin_inset Formula $at^{2}=-d\cosh^{2}u$ \end_inset y entonces \begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{-d\cosh^{2}u+d}=\sqrt{-d}\sqrt{\cosh^{2}u-1}=\sqrt{-d}\sinh u$ \end_inset y \begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sinh u\,du$ \end_inset . \begin_inset ERT status open \begin_layout Plain Layout \backslash end{sloppypar} \end_layout \end_inset \end_layout \begin_layout Itemize Si \begin_inset Formula $a<0$ \end_inset y \begin_inset Formula $d>0$ \end_inset hacemos \begin_inset Formula $at^{2}=-d\sin^{2}u$ \end_inset y entonces \begin_inset Formula $\sqrt{at^{2}+d}=\sqrt{-d\sin^{2}u+d}=\sqrt{d}\sqrt{1-\sin^{2}u}=\sqrt{d}\cos u$ \end_inset y \begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\cos u\,du$ \end_inset . \end_layout \begin_layout Section Aplicaciones \end_layout \begin_layout Standard Sean \begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ \end_inset continuas, si \begin_inset Formula $f(a)=g(a)$ \end_inset , \begin_inset Formula $f(b)=g(b)$ \end_inset y \begin_inset Formula $f(x)\geq g(x)$ \end_inset para todo \begin_inset Formula $x\in[a,b]$ \end_inset , se define el \series bold área encerrada \series default por las gráficas de \begin_inset Formula $f$ \end_inset y \begin_inset Formula $g$ \end_inset como \begin_inset Formula $\int_{a}^{b}(f(x)-g(x))\,dx$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}\in{\cal C}^{1}[a,b]$ \end_inset , la \series bold longitud de la curva \series default \begin_inset Formula $C=\{(x,f(x))\}_{x\in[a,b]}$ \end_inset viene dada por \begin_inset Formula $L=\int_{a}^{b}\sqrt{1+f'(x)^{2}}\,dx$ \end_inset . \series bold Interpretación: \series default Sea \begin_inset Formula $\pi\equiv(a=x_{0}<\dots0,\exists b_{0}\in(a,b):\forall x_{1},x_{2}\in(b_{0},b):x_{1}0,\exists b_{0}\in(a,b):\forall x_{1},x_{2}\in(b_{0},b):x_{1}0$ \end_inset con \begin_inset Formula $\varepsilon1$ \end_inset con \begin_inset Formula $\lim_{t\rightarrow\infty}f(t)t^{\alpha}$ \end_inset finito, \begin_inset Formula $\int_{a}^{\infty}f(t)\,dt$ \end_inset converge, mientras que si existe \begin_inset Formula $\alpha\leq1$ \end_inset con \begin_inset Formula $\lim_{t\rightarrow\infty}f(t)t^{\alpha}$ \end_inset no nulo, la integral diverge. \end_layout \begin_layout Subsection Convergencia absoluta \end_layout \begin_layout Standard Sea \begin_inset Formula $f$ \end_inset localmente integrable en \begin_inset Formula $[a,b)$ \end_inset , decimos que la integral impropia de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $[a,b)$ \end_inset es \series bold absolutamente convergente \series default si \begin_inset Formula $\int_{a}^{b}|f(t)|\,dt$ \end_inset es convergente. La convergencia absoluta implica la convergencia. \series bold Demostración: \series default Por el criterio de convergencia de Cauchy aplicado a \begin_inset Formula $|f(t)|$ \end_inset , dado \begin_inset Formula $\varepsilon>0$ \end_inset existe \begin_inset Formula $b_{0}\in(a,b)$ \end_inset tal que si \begin_inset Formula $b_{0}