#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ \end_inset es \series bold dos veces diferenciable \series default o \series bold de clase \series default \begin_inset Formula ${\cal C}^{2}$ \end_inset en \begin_inset Formula $a\in\Omega$ \end_inset si \begin_inset Formula $f$ \end_inset es diferenciable en \begin_inset Formula ${\cal U}\in{\cal E}(a)$ \end_inset y \begin_inset Formula $df:{\cal U}\rightarrow{\cal L}(\mathbb{R}^{m},\mathbb{R}^{n})\equiv M_{n\times m}(\mathbb{R})\equiv\mathbb{R}^{nm}$ \end_inset (la aplicación que a cada elemento de \begin_inset Formula ${\cal U}$ \end_inset le asigna un vector en \begin_inset Formula $\mathbb{R}^{nm}$ \end_inset que contiene, en algún orden, los elementos de la matriz asociada a la diferencial del elemento) es diferenciable en \begin_inset Formula $a$ \end_inset . Por inducción se define el ser \begin_inset Formula $n$ \end_inset veces diferenciable o de clase \begin_inset Formula ${\cal C}^{n}$ \end_inset , y el ser infinitamente diferenciable o de clase \begin_inset Formula ${\cal C}^{\infty}$ \end_inset . \end_layout \begin_layout Standard Denotamos la derivada parcial \begin_inset Formula $k$ \end_inset -ésima de la derivada parcial \begin_inset Formula $j$ \end_inset -ésima de la \begin_inset Formula $i$ \end_inset -ésima coordenada de \begin_inset Formula $f$ \end_inset , o la \begin_inset Formula $i$ \end_inset -ésima coordenada de la doble derivada parcial respecto a \begin_inset Formula $x_{j}$ \end_inset y \begin_inset Formula $x_{k}$ \end_inset , como \begin_inset Formula $\frac{\partial^{2}f_{i}}{\partial x_{j}\partial x_{k}}$ \end_inset , y si \begin_inset Formula $j=k$ \end_inset , también escribimos \begin_inset Formula $\frac{\partial^{2}f_{i}}{\partial x_{j}^{2}}$ \end_inset . Si \begin_inset Formula $f$ \end_inset tiene derivadas parciales segundas \begin_inset Formula $\frac{\partial f_{i}}{\partial x_{k}\partial x_{j}}$ \end_inset todas continuas en \begin_inset Formula $a$ \end_inset entonces \begin_inset Formula $f$ \end_inset es dos veces diferenciable en \begin_inset Formula $a$ \end_inset . \end_layout \begin_layout Section Matriz hessiana \end_layout \begin_layout Standard Del mismo modo que podemos pensar en la diferencial de una función diferenciable como \begin_inset Formula $df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ \end_inset dada por \begin_inset Formula $\vec{u}\mapsto d_{\vec{u}}f(a)$ \end_inset , llamamos \series bold diferencial segunda \series default de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $a$ \end_inset a la aplicación \begin_inset Formula $d^{2}f(a):\mathbb{R}^{m}\times\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ \end_inset con \begin_inset Formula $(\vec{u},\vec{v})\mapsto d_{\vec{v}}d_{\vec{u}}f(a)$ \end_inset , y vemos que esta es una aplicación bilineal. \end_layout \begin_layout Standard La matriz de \begin_inset Formula $d^{2}f(a):\mathbb{R}^{m}\times\mathbb{R}^{m}\rightarrow\mathbb{R}$ \end_inset , dada por \begin_inset Formula \[ \left(\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}\right)_{ij} \] \end_inset se denomina \series bold matriz hessiana \series default . Así, si \begin_inset Formula $M$ \end_inset es la matriz hessiana de \begin_inset Formula $f$ \end_inset , entonces \begin_inset Formula \[ d^{2}f(a)(\vec{u},\vec{v})=\left(\begin{array}{ccc} - & \vec{u} & -\end{array}\right)M\left(\begin{array}{c} |\\ \vec{v}\\ | \end{array}\right) \] \end_inset \end_layout \begin_layout Standard Como \series bold teorema \series default , sea \begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{2}\rightarrow\mathbb{R}$ \end_inset y \begin_inset Formula $a=(x_{0},y_{0})\in\Omega$ \end_inset , si \begin_inset Formula $\frac{\partial^{2}f}{\partial x\partial y}$ \end_inset y \begin_inset Formula $\frac{\partial^{2}f}{\partial y\partial x}$ \end_inset están definidas en \begin_inset Formula $\Omega$ \end_inset y son continuas en \begin_inset Formula $a$ \end_inset , entonces su valor en \begin_inset Formula $a$ \end_inset coincide. Esto significa que la matriz Hessiana es simétrica. \series bold Demostración: \series default Como \begin_inset Formula $\Omega$ \end_inset es abierto, existe \begin_inset Formula $\varepsilon$ \end_inset tal que \begin_inset Formula $B_{\infty}(a,\varepsilon)=(x_{0}-\varepsilon,x_{0}+\varepsilon)\times(y_{0}-\varepsilon,y_{0}+\varepsilon)\subseteq\Omega$ \end_inset . Fijamos \begin_inset Formula $t\in(x_{0}-\varepsilon,y_{0}+\varepsilon)$ \end_inset y \begin_inset Formula $s\in(y_{0}-\varepsilon,y_{0}+\varepsilon)$ \end_inset , y consideramos \begin_inset Formula $\Delta_{t,s}\coloneqq f(t,s)-f(t,y_{0})-f(x_{0},s)+f(x_{0},y_{0})$ \end_inset . Si ahora llamamos \begin_inset Formula $F_{\overline{s}}(\overline{t})\coloneqq f(\overline{t},\overline{s})-f(\overline{t},y_{0})$ \end_inset , vemos que \begin_inset Formula $F_{\overline{s}}(\overline{t})$ \end_inset es derivable con \begin_inset Formula $F'_{\overline{s}}(\overline{t})=\frac{\partial f}{\partial x}(\overline{t},\overline{s})-\frac{\partial f}{\partial x}(\overline{t},y_{0})$ \end_inset y que entonces \begin_inset Formula $\Delta_{t,s}=F_{s}(t)-F_{s}(x_{0})=F'_{\overline{s}}(\xi_{t,s})(t-x_{0})=\left(\frac{\partial f}{\partial x}(\xi_{t,s},s)-\frac{\partial f}{\partial x}(\xi_{t,s},y_{0})\right)(t-x_{0})\overset{\Phi(\overline{s})\coloneqq \frac{\partial f}{\partial x}(\xi_{t,s},\overline{s})}{=}(\Phi(s)-\Phi(y_{0}))(t-x_{0})\overset{\Phi\text{ derivable por hipótesis}}{=}\Phi'(\eta_{t,s})(s-y_{0})(t-x_{0})=\frac{\partial^{2}f}{\partial x\partial y}(\xi_{t,s},\eta_{t,s})(s-y_{0})(t-x_{0})$ \end_inset . Permutando los papeles de las dos coordenadas (definiendo \begin_inset Formula $\sigma_{\overline{t}}(\overline{s})\coloneqq f(\overline{t},\overline{s})-f(x,\overline{s})$ \end_inset ) obtenemos que \begin_inset Formula $\Delta_{t,s}=\sigma_{\overline{t}}(\overline{s})-\sigma_{\overline{t}}(y_{0})=\frac{\partial^{2}f}{\partial y\partial x}(\hat{\xi}_{t,s},\hat{\eta}_{t,s})(s-y_{0})(t-x_{0})$ \end_inset . Haciendo ahora tender \begin_inset Formula $(t,s)$ \end_inset a \begin_inset Formula $(x_{0},y_{0})$ \end_inset , por la regla del sandwich \begin_inset Formula $(\xi_{t,s},\eta_{ts})$ \end_inset y \begin_inset Formula $(\hat{\xi}_{t,s},\hat{\eta}_{t,s})$ \end_inset también tienden a \begin_inset Formula $(x_{0},y_{0})$ \end_inset , y aplicando la continuidad de las derivadas parciales dobles en \begin_inset Formula $a$ \end_inset , nos queda finalmente que \begin_inset Formula $\frac{\partial^{2}f}{\partial x\partial y}(x_{0},y_{0})=\frac{\partial^{2}f}{\partial y\partial x}(x_{0},y_{0})$ \end_inset . \end_layout \begin_layout Section Desarrollos de Taylor \end_layout \begin_layout Standard Despejando de la definición de diferencial, nos queda que \begin_inset Formula $f(a+h)=f(a)+df(a)(h)+o(\Vert h\Vert)$ \end_inset , lo que podemos interpretar como una aproximación de \begin_inset Formula $f(x)$ \end_inset cerca de \begin_inset Formula $a$ \end_inset por un polinomio de grado 1. Como \series bold teorema \series default , si \begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}$ \end_inset es dos veces diferenciable en \begin_inset Formula $a\in\Omega$ \end_inset entonces \begin_inset Formula $f(a+h)=f(a)+df(a)(h)+\frac{1}{2}d^{2}f(a)(h,h)+o(\Vert h\Vert^{2})$ \end_inset . \end_layout \begin_layout Standard \series bold Demostración: \series default Sea \begin_inset Formula $R(h)\coloneqq f(a+h)-f(a)-df(a)(h)-\frac{1}{2}d^{2}f(a)(h,h)$ \end_inset , y hemos de ver que \begin_inset Formula $\lim_{h\rightarrow0}\frac{R(h)}{\Vert h\Vert^{2}}=0$ \end_inset . Como todas las normas en \begin_inset Formula $\mathbb{R}^{m}$ \end_inset son equivalentes, elegimos \begin_inset Formula $\Vert\cdot\Vert_{\infty}$ \end_inset . Usamos el teorema del incremento finito, que afirma que si \begin_inset Formula $R$ \end_inset es diferenciable y \begin_inset Formula $\Vert dR(\xi)\Vert\leq M\forall\xi\in[0,h]$ \end_inset entonces \begin_inset Formula $\Vert R(h)-R(0)\Vert\leq M\cdot\Vert h-0\Vert$ \end_inset . \begin_inset Formula $R$ \end_inset es diferenciable al ser la suma de \begin_inset Formula $f(c+h)$ \end_inset y un polinomio de grado máximo 2. Para estimar \begin_inset Formula $\Vert dR\Vert$ \end_inset vemos que \begin_inset Formula $R(a)=f(a+h)-f(a)-\sum_{i}\frac{\partial f}{\partial x_{i}}(a)h_{i}-\frac{1}{2}\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)h_{i}h_{j}$ \end_inset , y usando la \begin_inset Formula $\delta$ \end_inset de Kronecker, \begin_inset Formula \[ \frac{\partial}{\partial x_{k}}\frac{1}{2}\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)h_{i}h_{j}=\frac{1}{2}\sum_{i,j}\left(\frac{\partial f}{\partial x_{i}x_{j}}(a)\delta_{ik}+\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)\delta_{jk}\right)=\frac{1}{2}\cdot2d\left(\frac{\partial f}{\partial x_{k}}\right)(a)(h) \] \end_inset Por tanto \begin_inset Formula \[ \frac{\partial R}{\partial x_{k}}=\frac{\partial f}{\partial x_{k}}(a+h)-0-\frac{\partial f}{\partial x_{k}}(a)-d\left(\frac{\partial f}{\partial x_{k}}\right)(a)(h)=:\psi_{k}(h)\Vert h\Vert \] \end_inset donde \begin_inset Formula $\lim_{h\rightarrow0}\psi(h)=0$ \end_inset . Como \begin_inset Formula $\frac{\partial R}{\partial x_{k}}$ \end_inset es continua, definiendo el compacto \begin_inset Formula $[0,h]$ \end_inset como \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $\{th\}_{t\in[0,1]}$ \end_inset \family default \series default \shape default \size default \emph default \bar default \strikeout default \xout default \uuline default \uwave default \noun default \color inherit existe un punto \begin_inset Formula $t_{k,h}h\in[0,h]$ \end_inset tal que \begin_inset Formula \[ \frac{\partial R}{\partial x_{k}}(t_{k,h}h)=\max\left\{ \frac{\partial R}{\partial x_{k}}(\xi)\right\} _{\xi\in[0,h]} \] \end_inset Por esto, y como \begin_inset Formula $dR(\xi)\equiv\left(\frac{\partial R}{\partial x_{1}}(\xi),\dots,\frac{\partial R}{\partial x_{m}}(\xi)\right)$ \end_inset , existe \begin_inset Formula $C$ \end_inset tal que \begin_inset Formula \[ \Vert dR(\xi)\Vert\leq C\cdot\Vert dR(a)\Vert_{\infty}=C\cdot\max\left\{ \left|\frac{\partial R}{\partial x_{k}}(a)\right|\right\} _{k=1}^{n} \] \end_inset para \begin_inset Formula $\xi\in[0,h]$ \end_inset , y por el teorema del incremento finito, si \begin_inset Formula $p$ \end_inset es tal que \begin_inset Formula \[ \left|\frac{\partial R}{\partial x_{p}}(a)\right|=\max\left\{ \left|\frac{\partial R}{\partial x_{k}}(a)\right|\right\} _{k=1}^{n} \] \end_inset tenemos \begin_inset Formula \[ \Vert R(h)\Vert=\Vert R(h)-R(0)\Vert\leq C\left|\frac{\partial R}{\partial x_{p}}(t_{p,h})\right|\Vert h\Vert=C\psi_{p}(t_{p,h}h)\Vert h\Vert\Vert h\Vert=C\psi_{p}(t_{p,h}h)\Vert h\Vert^{2} \] \end_inset y entonces \begin_inset Formula $\frac{|R(h)|}{\Vert h\Vert^{2}}\leq C\psi_{p}(t_{p,h}h)\rightarrow0$ \end_inset , lo que prueba el teorema. \end_layout \begin_layout Section Extremos relativos \end_layout \begin_layout Standard Si \begin_inset Formula $V$ \end_inset es un \begin_inset Formula $K$ \end_inset -espacio vectorial con \begin_inset Formula $k\coloneqq \dim_{K}(V)<+\infty$ \end_inset y \begin_inset Formula $\sigma:V\times V\rightarrow\mathbb{R}$ \end_inset una aplicación bilineal, existe \begin_inset Formula $A=(a_{ij})\in{\cal M}_{k}(K)$ \end_inset asociado a \begin_inset Formula $\sigma$ \end_inset y podemos definir \begin_inset Formula \[ \Delta_{1}=\left|a_{11}\right|,\Delta_{2}=\left|\begin{array}{cc} a_{11} & a_{12}\\ a_{21} & a_{22} \end{array}\right|,\dots,\Delta_{k}=\left|\begin{array}{ccc} a_{11} & \cdots & a_{1k}\\ \vdots & \ddots & \vdots\\ a_{k1} & \cdots & a_{kk} \end{array}\right| \] \end_inset Entonces un \series bold teorema \series default de álgebra nos dice que \begin_inset Formula $\sigma$ \end_inset es: \end_layout \begin_layout Enumerate Semidefinida positiva si y sólo si \begin_inset Formula $\Delta_{i}\geq0\forall i$ \end_inset . \end_layout \begin_layout Enumerate Semidefinida negativa si y sólo si \begin_inset Formula $\Delta_{i}(-1)^{i}\geq0\forall i$ \end_inset . \end_layout \begin_layout Enumerate Definida positiva si y sólo si \begin_inset Formula $\Delta_{i}>0\forall i$ \end_inset . \end_layout \begin_layout Enumerate Definida negativa si y sólo si \begin_inset Formula $\Delta_{i}(-1)^{i}>0\forall i$ \end_inset . \end_layout \begin_layout Standard Como \series bold teorema \series default , sea \begin_inset Formula $\Omega\subseteq\mathbb{R}^{m}$ \end_inset abierto, \begin_inset Formula $f:\Omega\rightarrow\mathbb{R}$ \end_inset y \begin_inset Formula $a\in\Omega$ \end_inset , \end_layout \begin_layout Enumerate Si \begin_inset Formula $f$ \end_inset alcanza en \begin_inset Formula $a$ \end_inset un extremo relativo entonces \begin_inset Formula $df(a)=0$ \end_inset . \begin_inset Newline newline \end_inset Podemos suponer que alcanza un máximo. Entonces \begin_inset Formula $\exists{\cal U}\in{\cal E}(a):f(x)\leq f(a)\forall x\in{\cal U}$ \end_inset , luego si para \begin_inset Formula $i\in\{1,\dots,m\}$ \end_inset definimos \begin_inset Formula $\varphi_{i}(t)\coloneqq f(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})$ \end_inset , fijado \begin_inset Formula $i$ \end_inset , \begin_inset Formula $\exists\varepsilon>0:\forall t\in(a-\varepsilon,a+\varepsilon),\varphi_{i}(t)\leq\varphi_{i}(a_{i})$ \end_inset y \begin_inset Formula $\frac{\partial f}{\partial x_{i}}(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})=\varphi'(t)$ \end_inset , luego \begin_inset Formula $\frac{\partial f}{\partial x_{i}}(a)=\varphi'(a_{i})=0$ \end_inset y \begin_inset Formula \[ df(a)=\left(\begin{array}{ccc} \frac{\partial f}{\partial x_{1}}(a) & \cdots & \frac{\partial f}{\partial x_{m}}(a)\end{array}\right)=0 \] \end_inset \end_layout \begin_layout Enumerate Si \begin_inset Formula $f$ \end_inset es de clase \begin_inset Formula ${\cal C}^{2}$ \end_inset y \begin_inset Formula $df(a)=0$ \end_inset , entonces \begin_inset Formula \begin{eqnarray*} d^{2}f(a)\text{ definida positiva} & \implies & f\text{ tiene un mínimo estricto en }a\implies\\ \implies f\text{ tiene un mínimo en }a & \implies & d^{2}f(a)\text{ semidefinida positiva} \end{eqnarray*} \end_inset \end_layout \begin_deeper \begin_layout Description \begin_inset Formula $1\implies2]$ \end_inset Consideremos el desarrollo de Taylor de \begin_inset Formula $f$ \end_inset de orden 2 en \begin_inset Formula $a$ \end_inset , que como \begin_inset Formula $df(a)=0$ \end_inset , queda como \begin_inset Formula \begin{eqnarray*} f(x) & = & f(a)+\frac{1}{2}d^{2}f(a)(x-a,x-a)+o(\Vert x-a\Vert^{2})\\ & = & f(a)+\frac{1}{2}\Vert x-a\Vert^{2}d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)+o(\Vert x-a\Vert^{2})\\ & = & f(a)+\frac{1}{2}\Vert x-a\Vert^{2}\left(d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)+\frac{2o(\Vert x-a\Vert^{2})}{\Vert x-a\Vert^{2}}\right) \end{eqnarray*} \end_inset suponiendo \begin_inset Formula $x\neq a$ \end_inset . Pero \begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}\mid \Vert y\Vert=1\}=:K$ \end_inset , que es compacto por ser cerrado y acotado, y \begin_inset Formula $\Phi:\mathbb{R}^{m}\rightarrow\mathbb{R}$ \end_inset dada por \begin_inset Formula $\Phi(u)\coloneqq d^{2}f(a)(u,u)=\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)u_{i}u_{j}$ \end_inset es continua, luego \begin_inset Formula $\Phi(K)=\left\{ d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)\right\} _{x\in\mathbb{R}^{m}}$ \end_inset es compacto y, por ser además \begin_inset Formula $d^{2}f(a)$ \end_inset definida positiva, existe \begin_inset Formula $M>0$ \end_inset tal que \begin_inset Formula $\Phi(K)\geq M$ \end_inset . \begin_inset Newline newline \end_inset Como \begin_inset Formula $\frac{2o(\Vert x-a\Vert^{2})}{\Vert x-a\Vert^{2}}\rightarrow0$ \end_inset cuando \begin_inset Formula $x\rightarrow a$ \end_inset , existe \begin_inset Formula ${\cal U}\in{\cal E}(a)$ \end_inset tal que \begin_inset Formula $\forall x\in{\cal U},\left|\frac{2o(\Vert x-a\Vert)^{2}}{\Vert x-a\Vert^{2}}\right|M-M=0$ \end_inset y \begin_inset Formula $f(x)>f(a)+\frac{1}{2}\Vert x-a\Vert^{2}\cdot0=f(a)$ \end_inset . \end_layout \begin_layout Description \begin_inset Formula $2\implies3]$ \end_inset Obvio. \end_layout \begin_layout Description \begin_inset Formula $3\implies4]$ \end_inset Fijamos \begin_inset Formula $u\in\mathbb{R}^{m}$ \end_inset y definimos \begin_inset Formula $\varphi(t)\coloneqq a+tu$ \end_inset como la función \begin_inset Formula $\varphi:\mathbb{R}\rightarrow\mathbb{R}^{m}$ \end_inset que parametriza la recta \begin_inset Formula $a+<\vec{u}>$ \end_inset . Sea \begin_inset Formula ${\cal U}\in{\cal E}(a)$ \end_inset con \begin_inset Formula $f(a)\leq f(x)\forall x\in{\cal U}$ \end_inset , si restringimos \begin_inset Formula $\varphi$ \end_inset a \begin_inset Formula $\varphi^{-1}({\cal U})$ \end_inset , un entorno de 0 en \begin_inset Formula $\mathbb{R}$ \end_inset , entonces \begin_inset Formula $f\circ\varphi$ \end_inset alcanza un mínimo en 0, pues \begin_inset Formula $(f\circ\varphi)(0)=f(\varphi(0))=f(a)\leq f(\varphi(t))\forall t\in\varphi^{-1}({\cal U})$ \end_inset , y tenemos que \begin_inset Formula $f\circ\varphi$ \end_inset es de clase \begin_inset Formula ${\cal C}^{2}$ \end_inset y semidefinida positiva. Por la regla de la cadena, al ser \begin_inset Formula $\varphi$ \end_inset y \begin_inset Formula $f$ \end_inset diferenciables, \begin_inset Formula \begin{multline*} d(f\circ\varphi)(t)=df(\varphi(t))\circ d\varphi(t)\equiv\\ \equiv\left(\begin{array}{ccc} \frac{\partial f}{\partial x_{1}}(a+tu) & \cdots & \frac{\partial f}{\partial x_{m}}(a+tu)\end{array}\right)\left(\begin{array}{c} u_{1}\\ \vdots\\ u_{m} \end{array}\right)=\sum_{i}\frac{\partial f}{\partial x_{i}}(a+tu)u_{i} \end{multline*} \end_inset Entonces \begin_inset Formula $d^{2}(f\circ\varphi)(t)\equiv\frac{d}{dt}\sum_{i}\frac{\partial f}{\partial x_{i}}(a+tu)u_{i}=\sum_{i}u_{i}\frac{d}{dt}\left(\frac{\partial f}{\partial x_{i}}(a+tu)\right)$ \end_inset . Como \begin_inset Formula $\frac{\partial f}{\partial x_{i}}$ \end_inset es diferenciable al ser \begin_inset Formula $f$ \end_inset de clase \begin_inset Formula ${\cal C}^{2}$ \end_inset , \begin_inset Formula \begin{multline*} \frac{d}{dt}\left(\frac{\partial f}{\partial x_{i}}(a+tu)\right)=d\left(\frac{\partial f}{\partial x_{i}}\circ\varphi\right)(t)=d\frac{\partial f}{\partial x_{i}}(\varphi(t))\circ d\varphi(t)\equiv\\ \equiv\left(\begin{array}{ccc} \frac{\partial^{2}f}{\partial_{i}\partial_{1}}(a+tu) & \cdots & \frac{\partial^{2}f}{\partial_{i}\partial_{m}}(a+tu)\end{array}\right)\left(\begin{array}{c} u_{1}\\ \vdots\\ u_{m} \end{array}\right)=\sum_{j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(a+tu)u_{j} \end{multline*} \end_inset Sustituyendo, \begin_inset Formula $d^{2}(f\circ\varphi)(t)\equiv\sum_{i,j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(a+tu)u_{i}u_{j}=d^{2}f(a+tu)(u,u)$ \end_inset . Pero al ser \begin_inset Formula $f\circ\varphi$ \end_inset una función real de una variable real dos veces derivable con su mínimo en 0, sustituyendo \begin_inset Formula $0\leq(f\circ\varphi)''(0)=d^{2}f(a)(u,u)$ \end_inset , y como esto se cumple para todo \begin_inset Formula $u\in\mathbb{R}^{m}$ \end_inset , queda probado que \begin_inset Formula $d^{2}f(a)$ \end_inset es semidefinida positiva. \end_layout \end_deeper \end_body \end_document