#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style swiss \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Una aplicación \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ \end_inset es \series bold afín \series default si existe \begin_inset Formula $\overrightarrow{f}:V\rightarrow V'$ \end_inset tal que para \begin_inset Formula $P\in{\cal E},\vec{v}\in V$ \end_inset , \begin_inset Formula $f(P+\vec{v})=f(P)+\overrightarrow{f}(\vec{v})$ \end_inset , es decir, \begin_inset Formula $\overrightarrow{f}(\vec{v})=\overrightarrow{f(P)f(P+\vec{v})}$ \end_inset . Así, \begin_inset Formula $\overrightarrow{f}$ \end_inset queda determinada por \begin_inset Formula $f$ \end_inset y se le llama \series bold aplicación lineal asociada \series default a \begin_inset Formula $f$ \end_inset . Las aplicaciones afines \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset son \series bold transformaciones afines \series default de \begin_inset Formula ${\cal E}$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula ${\cal E}$ \end_inset y \begin_inset Formula ${\cal E}'$ \end_inset tienen dimensión finita siendo \begin_inset Formula $\Re=(O;{\cal B}=\{\vec{v}_{1},\dots,\vec{v}_{n}\})$ \end_inset y \begin_inset Formula $\Re'=(O';{\cal B}')$ \end_inset referenciales cartesianos de \begin_inset Formula ${\cal E}$ \end_inset y \begin_inset Formula ${\cal E}'$ \end_inset , sea \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ \end_inset con \begin_inset Formula $X_{0}=[f(O)]_{\Re'}=[\overrightarrow{O'f(O)}]_{{\cal B}'}$ \end_inset y \begin_inset Formula $\overrightarrow{f}$ \end_inset dada por \begin_inset Formula $M=M_{{\cal B}'{\cal B}}(\overrightarrow{f})$ \end_inset , entonces \begin_inset Formula \[ [f(X)]_{\Re'}=[f(O)+\overrightarrow{f}(\overrightarrow{OX})]_{\Re'}=[f(O)]_{\Re'}+[\overrightarrow{f}(\overrightarrow{OX})]_{{\cal B}}=X_{0}+M[X]_{\Re} \] \end_inset \end_layout \begin_layout Standard Lo que nos da la \series bold representación matricial \series default o las \series bold ecuaciones \series default de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $\Re$ \end_inset y \begin_inset Formula $\Re'$ \end_inset como \begin_inset Formula $X'=X_{0}+MX$ \end_inset o \begin_inset Formula \[ \left(\begin{array}{c} 1\\ \hline X' \end{array}\right)=\left(\begin{array}{c|c} 1 & 0\\ \hline X_{0} & M \end{array}\right)\left(\begin{array}{c} 1\\ \hline X \end{array}\right) \] \end_inset \end_layout \begin_layout Section Propiedades \end_layout \begin_layout Enumerate Dados \begin_inset Formula $f,g:{\cal E}\rightarrow{\cal E}'$ \end_inset , \begin_inset Formula $\exists P\in{\cal E}:f(P)=g(P)\land\overrightarrow{f}=\overrightarrow{g}\implies f=g$ \end_inset . \begin_inset Newline newline \end_inset Dado un \begin_inset Formula $Q\in{\cal E}$ \end_inset arbitrario, \begin_inset Formula $f(Q)=f(P)+\overrightarrow{f}(\overrightarrow{PQ})=g(P)+\overrightarrow{g}(\overrightarrow{PQ})=g(Q)$ \end_inset . \end_layout \begin_layout Enumerate Dados \begin_inset Formula $P\in{\cal E}$ \end_inset , \begin_inset Formula $P'\in{\cal E}'$ \end_inset y \begin_inset Formula $\phi:V\rightarrow V'$ \end_inset vectorial, existe una única aplicación afín \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ \end_inset con \begin_inset Formula $f(P)=P'$ \end_inset y \begin_inset Formula $\overrightarrow{f}=\phi$ \end_inset , dada por \begin_inset Formula $f(Q)\coloneqq P'+\phi(\overrightarrow{PQ})$ \end_inset . \begin_inset Formula \[ f(Q+\vec{v})=P'+\phi(\overrightarrow{P(Q+\vec{v})})=P'+\phi(\overrightarrow{PQ}+\vec{v})=P'+\phi(\overrightarrow{PQ})+\phi(\vec{v})=f(Q)+\phi(\vec{v}) \] \end_inset por lo que es afín. Además, \begin_inset Formula $f(P)=P'+\phi(\overrightarrow{PP})=P'$ \end_inset , y la unicidad se desprende del apartado anterior. \end_layout \begin_layout Enumerate La composición de aplicaciones afines \begin_inset Formula $g$ \end_inset y \begin_inset Formula $f$ \end_inset es afín, y \begin_inset Formula $\overrightarrow{g\circ f}=\overrightarrow{g}\circ\overrightarrow{f}$ \end_inset . \begin_inset Newline newline \end_inset Sean \begin_inset Formula ${\cal E}\overset{f}{\rightarrow}{\cal E}'\overset{g}{\rightarrow}{\cal E}''$ \end_inset , para \begin_inset Formula $P\in{\cal E},\vec{v}\in V$ \end_inset , \begin_inset Formula \[ (g\circ f)(P+\vec{v})=g(f(P)+\overrightarrow{f}(\vec{v}))=g(f(P))+\overrightarrow{g}(\overrightarrow{f}(\vec{v}))=(g\circ f)(P)+(\overrightarrow{g}\circ\overrightarrow{f})(\vec{v}) \] \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $f$ \end_inset es inyectiva si y sólo si lo es \begin_inset Formula $\overrightarrow{f}$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Dados \begin_inset Formula $P\in{\cal E},\vec{v}\in\text{Nuc}(\overrightarrow{f})$ \end_inset , \begin_inset Formula $f(P+\vec{v})=f(P)+\overrightarrow{f}(\vec{v})=f(P)$ \end_inset , y por la inyectividad \begin_inset Formula $P+\vec{v}=P$ \end_inset y \begin_inset Formula $\vec{v}=0$ \end_inset , de modo que \begin_inset Formula $\text{Nuc}(\overrightarrow{f})=\{0\}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Sean \begin_inset Formula $f(P)=f(Q)$ \end_inset , entonces \begin_inset Formula $\overrightarrow{f}(\overrightarrow{PQ})=\overrightarrow{f(P)f(Q)}=\vec{0}$ \end_inset , y por la inyectividad de \begin_inset Formula $\overrightarrow{f}$ \end_inset , \begin_inset Formula $\overrightarrow{PQ}=\vec{0}$ \end_inset y \begin_inset Formula $P=Q$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $f$ \end_inset es suprayectiva si y sólo si lo es \begin_inset Formula $\overrightarrow{f}$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Dado \begin_inset Formula $\vec{v}'\in V'$ \end_inset , sea \begin_inset Formula $P\in{\cal E}$ \end_inset arbitrario, \begin_inset Formula $f(P)+\vec{v}'\in{\cal E}'$ \end_inset y por la suprayectividad de \begin_inset Formula $f$ \end_inset , existe \begin_inset Formula $Q\in{\cal E}$ \end_inset con \begin_inset Formula $f(Q)=f(P)+\vec{v}'$ \end_inset , por lo que \begin_inset Formula $\vec{v}'=\overrightarrow{f(P)f(Q)}=\overrightarrow{f}(\overrightarrow{PQ})$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Dado \begin_inset Formula $Q'\in{\cal E}'$ \end_inset , sea \begin_inset Formula $P\in{\cal E}$ \end_inset arbitrario, \begin_inset Formula $\overrightarrow{f(P)Q'}\in V'$ \end_inset , y por la suprayectividad de \begin_inset Formula $\overrightarrow{f}$ \end_inset existe \begin_inset Formula $\vec{v}\in V$ \end_inset con \begin_inset Formula $\overrightarrow{f}(\vec{v})=\overrightarrow{f(P)Q'}$ \end_inset , luego \begin_inset Formula $Q'=f(P)+\overrightarrow{f}(\vec{v})=f(P+\vec{v})$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ \end_inset es afín y biyectiva, entonces \begin_inset Formula $f^{-1}$ \end_inset es afín y \begin_inset Formula $\overrightarrow{f^{-1}}=\overrightarrow{f}^{-1}$ \end_inset . \begin_inset Newline newline \end_inset \begin_inset Formula \[ f^{-1}(P'+\vec{v}')=f^{-1}(P')+\overrightarrow{f}^{-1}(\vec{v}')\iff f(f^{-1}(P'+\vec{v}'))=P'+\vec{v}'=f(f^{-1}(P')+\overrightarrow{f}^{-1}(\vec{v}')) \] \end_inset \end_layout \begin_layout Standard Esto último nos lleva al concepto de \series bold isomorfismo de espacios afines \series default , una aplicación afín y biyectiva \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ \end_inset . Cuando existe se dice que \begin_inset Formula ${\cal E}$ \end_inset y \begin_inset Formula ${\cal E}'$ \end_inset son \series bold isomorfos \series default . Como \series bold teorema \series default , dos espacios afines de dimensión finita sobre el mismo cuerpo son isomorfos si y sólo si tienen la misma dimensión. Más propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $M=\frac{A+B}{2}\implies f(M)=\frac{f(A)+f(B)}{2}$ \end_inset . \begin_inset Formula \[ \overrightarrow{AB}=2\overrightarrow{AM}\implies\overrightarrow{f(A)f(B)}=\overrightarrow{f}(\overrightarrow{AB})=\overrightarrow{f}(2\overrightarrow{AM})=2\overrightarrow{f(A)f(M)} \] \end_inset \end_layout \begin_layout Enumerate Si \begin_inset Formula ${\cal L}=P+W$ \end_inset es una variedad de \begin_inset Formula ${\cal E}$ \end_inset , \begin_inset Formula $f({\cal L})=f(P)+\overrightarrow{f}(W)$ \end_inset lo es de \begin_inset Formula ${\cal E}'$ \end_inset . \begin_inset Formula \[ \begin{array}{c} Q'\in f({\cal L})\iff\exists\vec{w}\in W:Q'=f(P+\vec{w})=f(P)+\overrightarrow{f}(\vec{w})\iff\\ \iff\overrightarrow{f(P)Q'}=\overrightarrow{f}(\vec{w})\in\overrightarrow{f}(W)\iff Q'\in f(P)+\overrightarrow{f}(W) \end{array} \] \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula ${\cal L}_{1}\ll{\cal L}_{2}\subseteq{\cal E}\implies f({\cal L}_{1})\ll f({\cal L}_{2})$ \end_inset ; \begin_inset Formula ${\cal L}_{1}\parallel{\cal L}_{2}\subseteq{\cal E}\implies f({\cal L}_{1})\parallel f({\cal L}_{2})$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Se sigue de lo anterior y de que \begin_inset Formula $\overrightarrow{f}$ \end_inset conserva las inclusiones entre subespacios. \end_layout \end_deeper \begin_layout Enumerate Sea \begin_inset Formula $f$ \end_inset biyectiva, si \begin_inset Formula ${\cal L}'=P'+W$ \end_inset es una variedad de \begin_inset Formula ${\cal E}'$ \end_inset y su inversa \begin_inset Formula $f^{-1}({\cal L}')\neq\emptyset$ \end_inset , esta es una variedad de \begin_inset Formula ${\cal E}$ \end_inset . En concreto, \begin_inset Formula $\text{dir}(f^{-1}({\cal L}'))=\overrightarrow{f}^{-1}(W')$ \end_inset . \begin_inset Formula \[ \begin{array}{c} Q\in f^{-1}({\cal L}')\iff f(Q)\in{\cal L}'\iff\overrightarrow{P'f(Q)}\in W'\iff\\ \iff\overrightarrow{f(P)P'}+\overrightarrow{P'f(Q)}=\overrightarrow{f(P)f(Q)}=\overrightarrow{f}(\overrightarrow{PQ})\in W'\iff\\ \iff\overrightarrow{PQ}\in\overrightarrow{f}^{-1}(W')\iff Q\in P+\overrightarrow{f}^{-1}(W') \end{array} \] \end_inset \end_layout \begin_layout Section Puntos fijos \end_layout \begin_layout Standard \begin_inset Formula $Q\in{\cal E}$ \end_inset es un \series bold punto fijo \series default de \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset si \begin_inset Formula $f(Q)=Q$ \end_inset , y definimos \begin_inset Formula \[ \text{Fix}(f):=\{Q\in{\cal E}\mid f(Q)=Q\} \] \end_inset \end_layout \begin_layout Standard Un \series bold subespacio invariante \series default por \begin_inset Formula $\phi:V\rightarrow V$ \end_inset es un subespacio \begin_inset Formula $U$ \end_inset de \begin_inset Formula $V$ \end_inset con \begin_inset Formula $f(U)\subseteq U$ \end_inset . Destacamos el subespacio de los \series bold vectores invariantes \series default o asociado al autovalor 1, \begin_inset Formula \[ \text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=\vec{v}\} \] \end_inset y el de los \series bold opuestos \series default o asociado al autovalor \begin_inset Formula $-1$ \end_inset , \begin_inset Formula \[ \text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=-\vec{v}\} \] \end_inset \end_layout \begin_layout Standard Se tiene que \begin_inset Formula $P\in\text{Fix}(f)\neq\emptyset\implies\text{Fix}(f)=P+\text{Inv}(\overrightarrow{f})$ \end_inset . \series bold Demostración: \series default Si \begin_inset Formula $f(P)=P$ \end_inset , \begin_inset Formula \[ \begin{array}{c} Q\in P+\text{Inv}(\overrightarrow{f})\iff\overrightarrow{PQ}\in\text{Inv}(\overrightarrow{f})\iff\overrightarrow{PQ}=\overrightarrow{f}(\overrightarrow{PQ})=\overrightarrow{f(P)f(Q)}=\overrightarrow{Pf(Q)}\iff\\ \iff Q=f(Q)\iff Q\in\text{Fix}(f) \end{array} \] \end_inset \end_layout \begin_layout Standard En coordenadas, \begin_inset Formula $\text{Inv}(\overrightarrow{f})$ \end_inset se obtiene como las soluciones del sistema \begin_inset Formula $(I-M|0)$ \end_inset , mientras que \begin_inset Formula $\text{Fix}(f)$ \end_inset se obtiene como las soluciones del sistema \begin_inset Formula $(I-M|X_{0})$ \end_inset . Por tanto, \begin_inset Formula $\text{Inv}(\overrightarrow{f})=0\iff|\text{Fix}(f)|=1$ \end_inset . \end_layout \begin_layout Section Ejemplos de transformaciones afines \end_layout \begin_layout Subsection Traslaciones \end_layout \begin_layout Standard Dado \begin_inset Formula $\vec{v}\in V$ \end_inset , la \series bold traslación \series default de vector \begin_inset Formula $\vec{v}$ \end_inset es la aplicación \begin_inset Formula $t_{\vec{v}}:{\cal E}\rightarrow{\cal E}$ \end_inset con \begin_inset Formula $t_{\vec{v}}(P)=P+\vec{v}$ \end_inset . Propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $t_{\vec{v}}$ \end_inset es afín y \begin_inset Formula $\overrightarrow{t_{\vec{v}}}=id_{V}$ \end_inset . \begin_inset Formula \[ t_{\vec{v}}(P+\vec{w})=P+\vec{w}+\vec{v}=t_{\vec{v}}(P)+id_{V}(\vec{w}) \] \end_inset \end_layout \begin_layout Enumerate Recíprocamente, si \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset es afín con \begin_inset Formula $\overrightarrow{f}=id_{V}$ \end_inset entonces \begin_inset Formula $f=t_{\overrightarrow{Pf(P)}}$ \end_inset , dado \begin_inset Formula $P\in{\cal E}$ \end_inset . \begin_inset Newline newline \end_inset Sea \begin_inset Formula $P\in{\cal E}$ \end_inset arbitrario y \begin_inset Formula $\vec{v}\coloneqq \overrightarrow{Pf(P)}$ \end_inset , \begin_inset Formula $f$ \end_inset y \begin_inset Formula $t_{\vec{v}}$ \end_inset son aplicaciones afines con la misma lineal asociada y actúan igual sobre \begin_inset Formula $P$ \end_inset , luego \begin_inset Formula $f=t_{\vec{v}}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $t_{\vec{0}}=id_{{\cal E}}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\vec{v}\neq\vec{0}\implies\text{Fix}(t_{\vec{v}})=\emptyset$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $t_{\vec{v}}\circ t_{\vec{w}}=t_{\vec{w}}\circ t_{\vec{v}}=t_{\vec{v}+\vec{w}}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $t_{\vec{v}}^{-1}=t_{-\vec{v}}$ \end_inset . \end_layout \begin_layout Enumerate La expresión matricial de \begin_inset Formula $t_{\vec{v}}$ \end_inset sobre \begin_inset Formula $\Re=(O,{\cal B})$ \end_inset es \begin_inset Formula $X'=[\vec{v}]_{{\cal B}}+X$ \end_inset . \end_layout \begin_layout Enumerate Para \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset afín, \begin_inset Formula $f\circ t_{\vec{v}}=t_{\vec{v}}\circ f\iff\vec{v}\in\text{Inv}(\overrightarrow{f})$ \end_inset . \begin_inset Newline newline \end_inset Como ambas tienen la misma lineal asociada ( \begin_inset Formula $\overrightarrow{f}$ \end_inset ), serán iguales si y sólo si actúan igual sobre un \begin_inset Formula $P\in{\cal E}$ \end_inset arbitrario. \begin_inset Formula \[ f\circ t_{\vec{v}}=t_{\vec{v}}\circ f\iff f(t_{\vec{v}}(P))=t_{\vec{v}}(f(P))\iff f(P+\vec{v})=f(P)+\vec{v}\iff\overrightarrow{f}(\vec{v})=\vec{v} \] \end_inset \end_layout \begin_layout Enumerate Dado \begin_inset Formula $P\in{\cal E}$ \end_inset y \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset , \begin_inset Formula $f=t_{\vec{v}}\circ g$ \end_inset donde \begin_inset Formula $\vec{v}=\overrightarrow{Pf(P)}$ \end_inset y \begin_inset Formula $g$ \end_inset es una transformación afín con \begin_inset Formula $g(P)=P$ \end_inset y \begin_inset Formula $\overrightarrow{g}=\overrightarrow{f}$ \end_inset . \begin_inset Newline newline \end_inset \begin_inset Formula $g\coloneqq t_{-\vec{v}}\circ f$ \end_inset es afín con \begin_inset Formula $g(P)=t_{-\vec{v}}(f(P))=f(P)-\vec{v}=f(P)+\overrightarrow{f(P)P}=P$ \end_inset y \begin_inset Formula $\overrightarrow{g}=\overrightarrow{t_{-\vec{v}}}\circ\overrightarrow{f}=\overrightarrow{f}$ \end_inset , y componiendo se obtiene \begin_inset Formula $f=t_{\vec{v}}\circ g$ \end_inset . \end_layout \begin_layout Subsection Homotecias \end_layout \begin_layout Standard Dados \begin_inset Formula $O\in{\cal E},\lambda\in K$ \end_inset , la \series bold homotecia \series default de centro \begin_inset Formula $O$ \end_inset y razón \begin_inset Formula $\lambda$ \end_inset es la aplicación \begin_inset Formula $H_{O,\lambda}:{\cal E}\rightarrow{\cal E}$ \end_inset dada por \begin_inset Formula $H_{O,\lambda}(P)\coloneqq O+\lambda\overrightarrow{OP}$ \end_inset . Así, para \begin_inset Formula $P\neq O$ \end_inset , la razón simple \begin_inset Formula $(O,P,H_{O,\lambda}(P))=\lambda$ \end_inset . Para \begin_inset Formula $\lambda=0$ \end_inset se obtiene la aplicación constante, que lleva todos los puntos a \begin_inset Formula $O$ \end_inset ; para \begin_inset Formula $\lambda=1$ \end_inset se obtiene la identidad, y para \begin_inset Formula $\lambda=-1$ \end_inset se obtiene la \series bold simetría central \series default sobre \begin_inset Formula $O$ \end_inset , escrita \begin_inset Formula $s_{O}\coloneqq H_{O,-1}$ \end_inset . Propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $H_{O,\lambda}$ \end_inset es afín con \begin_inset Formula $\overrightarrow{H_{O,\lambda}}=h_{\lambda}$ \end_inset . \begin_inset Formula \[ H_{O,\lambda}(P+\vec{w})=O+\lambda\overrightarrow{O(P+\vec{w})}=O+\lambda(\overrightarrow{OP}+\overrightarrow{w})=(O+\lambda\overrightarrow{OP})+\lambda\vec{w}=H_{O,\lambda}(P)+h_{\lambda}(\vec{w}) \] \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $\lambda\neq1\implies\text{Fix}(H_{O,\lambda})=\{O\}$ \end_inset . \begin_inset Formula \[ \begin{array}{c} P=H_{O,\lambda}(P)=O+\lambda\overrightarrow{OP}\iff\overrightarrow{OP}=\lambda\overrightarrow{OP}\iff\\ \iff(\lambda-1)\overrightarrow{OP}=\vec{0}\overset{\lambda\neq1}{\iff}\overrightarrow{OP}=\vec{0}\iff P=O \end{array} \] \end_inset \end_layout \begin_layout Enumerate Si \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset es afín con \begin_inset Formula $\overrightarrow{f}=h_{\lambda}$ \end_inset y \begin_inset Formula $\lambda\neq1$ \end_inset entonces \begin_inset Formula $f$ \end_inset es la homotecia \begin_inset Formula $f=H_{O,\lambda}$ \end_inset con \begin_inset Formula $O=P+\frac{1}{1-\lambda}\overrightarrow{Pf(P)}$ \end_inset . Así, para una simetría central, \begin_inset Formula $O=\frac{P+f(P)}{2}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Como \begin_inset Formula $\overrightarrow{f}=\overrightarrow{H_{O,\lambda}}$ \end_inset , será \begin_inset Formula $f=H_{O,\lambda}$ \end_inset si actúan igual sobre un punto. Por la definición de \begin_inset Formula $O$ \end_inset se tiene que \begin_inset Formula $\overrightarrow{PO}=\frac{1}{1-\lambda}\overrightarrow{Pf(P)}$ \end_inset y por tanto \begin_inset Formula $(1-\lambda)\overrightarrow{PO}=\overrightarrow{Pf(P)}$ \end_inset , luego \begin_inset Formula \[ \overrightarrow{Of(O)}=\overrightarrow{OP}+\overrightarrow{Pf(P)}+\overrightarrow{f(P)f(O)}=-\overrightarrow{PO}+(1-\lambda)\overrightarrow{PO}+\lambda\overrightarrow{PO}=\vec{0} \] \end_inset \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $H_{O,\lambda}\circ H_{O,\mu}=H_{O,\mu}\circ H_{O,\lambda}=H_{O,\lambda\mu}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\lambda\neq0\implies H_{O,\lambda}^{-1}=H_{O,\lambda^{-1}}$ \end_inset . \end_layout \begin_layout Enumerate La expresión matricial de \begin_inset Formula $H_{O,\lambda}$ \end_inset en el referencial \begin_inset Formula $\Re$ \end_inset es \begin_inset Formula $X'=(1-\lambda)[O]_{\Re}+\lambda X$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $\lambda\neq1$ \end_inset entonces \begin_inset Formula $t_{\vec{v}}\circ H_{O,\lambda}$ \end_inset y \begin_inset Formula $H_{O,\lambda}\circ t_{\vec{v}}$ \end_inset son homotecias de razón \begin_inset Formula $\lambda$ \end_inset y centros respectivos \begin_inset Formula $O+\frac{1}{1-\lambda}\vec{v}$ \end_inset y \begin_inset Formula $O+\frac{\lambda}{1-\lambda}\vec{v}$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $O\neq O'$ \end_inset y \begin_inset Formula $\lambda\lambda'=1$ \end_inset entonces \begin_inset Formula $H_{O,\lambda}\circ H_{O',\lambda'}=t_{(1-\lambda)\overrightarrow{O'O}}$ \end_inset . \end_layout \begin_layout Subsection Proyecciones y simetrías vectoriales \end_layout \begin_layout Standard Si \begin_inset Formula $V=W_{1}\oplus W_{2}$ \end_inset , la \series bold proyección vectorial \series default \begin_inset Formula $\pi$ \end_inset y la \series bold simetría vectorial \series default \begin_inset Formula $\sigma$ \end_inset de \series bold base \series default \begin_inset Formula $W_{1}$ \end_inset y \series bold dirección \series default \begin_inset Formula $W_{2}$ \end_inset , o sobre \begin_inset Formula $W_{1}$ \end_inset y paralelamente a \begin_inset Formula $W_{2}$ \end_inset son los endomorfismos de \begin_inset Formula $V$ \end_inset tales que, si \begin_inset Formula $\vec{v}$ \end_inset se descompone como \begin_inset Formula $\vec{v}=\vec{w}_{1}+\vec{w}_{2}$ \end_inset con \begin_inset Formula $\vec{w}_{1}\in W_{1}$ \end_inset y \begin_inset Formula $\vec{w}_{2}\in W_{2}$ \end_inset , entonces \begin_inset Formula $\pi_{W_{1},W_{2}}(\vec{v})=\vec{w}_{1}$ \end_inset y \begin_inset Formula $\sigma_{W_{1},W_{2}}(\vec{v})=\vec{w}_{1}-\vec{w}_{2}$ \end_inset . Propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $\sigma+id_{V}=2\pi$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\pi$ \end_inset es \series bold idempotente \series default ( \begin_inset Formula $\pi^{2}=\pi$ \end_inset ) y \begin_inset Formula $\sigma$ \end_inset es \series bold involutiva \series default ( \begin_inset Formula $\sigma^{2}=id_{V}$ \end_inset , es decir, \begin_inset Formula $\sigma^{-1}=\sigma$ \end_inset ). \end_layout \begin_layout Enumerate \begin_inset Formula $W_{1}=\text{Inv}(\pi)$ \end_inset y \begin_inset Formula $W_{2}=\text{Nuc}(\pi)$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $W_{1}=\text{Inv}(\sigma)$ \end_inset y \begin_inset Formula $W_{2}=\text{Opp}(\sigma)$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\phi\text{ es proyección (con }W_{1}=\text{Inv}(\phi)\text{ y }W_{2}=\text{Nuc}(\phi)\text{)}\iff\phi\text{ es \textbf{idempotente} (}\phi^{2}=\phi\text{)}\iff V=\text{Inv}(\phi)\oplus\text{Nuc}(\phi)$ \end_inset . \end_layout \begin_deeper \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[2\implies3]$ \end_inset \begin_inset Formula $\vec{v}=\phi(\vec{v})+(\vec{v}-\phi(\vec{v}))\in\text{Inv}(\phi)+\text{Nuc}(\phi)$ \end_inset para todo \begin_inset Formula $\vec{v}\in V$ \end_inset , y \begin_inset Formula $\vec{v}\in\text{Inv}(\phi)\cap\text{Nuc}(\phi)\implies\vec{v}\overset{\text{Inv}}{=}\phi(\vec{v})\overset{\text{Nuc}}{=}\vec{0}$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[3\implies1]$ \end_inset Si \begin_inset Formula $\vec{v}=\vec{w}_{1}+\vec{w}_{2}$ \end_inset con \begin_inset Formula $\vec{w}_{1}\in\text{Inv}(\phi)$ \end_inset y \begin_inset Formula $\vec{w}_{2}\in\text{Nuc}(\phi)$ \end_inset , entonces \begin_inset Formula $\phi(\vec{v})=\phi(\vec{w}_{1})+\phi(\vec{w}_{2})=\vec{w}_{1}+\vec{0}=\vec{w}_{1}$ \end_inset , luego \begin_inset Formula $\phi$ \end_inset es la proyección de base \begin_inset Formula $\text{Inv}(\phi)$ \end_inset y dirección \begin_inset Formula $\text{Nuc}(\phi)$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\phi\text{ es simetría (con }W_{1}=\text{Inv}(\phi)\text{ y }W_{2}=\text{Nuc}(\phi)\text{)}\iff\text{\phi}\text{ es \textbf{involutiva} (}\phi^{2}=id_{V}\text{)}\iff V=\text{Inv}(\phi)\oplus\text{Opp}(\phi)$ \end_inset . \begin_inset Newline newline \end_inset Demostración análoga, tomando \begin_inset Formula $\vec{v}=\frac{1}{2}(\vec{v}+\phi(\vec{v}))+\frac{1}{2}(\vec{v}-\phi(\vec{v}))$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $\{\vec{w}_{1},\dots,\vec{w}_{n}\}$ \end_inset es base de \begin_inset Formula $W_{1}$ \end_inset y \begin_inset Formula $\{\vec{u}_{1},\dots,\vec{u}_{m}\}$ \end_inset es de \begin_inset Formula $W_{2}$ \end_inset , podemos definir la base \begin_inset Formula ${\cal B}\coloneqq \{\vec{w}_{1},\dots,\vec{w}_{n},\vec{u}_{1},\dots,\vec{u}_{m}\}$ \end_inset de \begin_inset Formula $V$ \end_inset y entonces \begin_inset Formula $M_{{\cal B}}(\pi_{W_{1},W_{2}})=\left(\begin{array}{c|c} I_{n} & 0\\ \hline 0 & 0 \end{array}\right)$ \end_inset y \begin_inset Formula $M_{{\cal B}}(\sigma_{W_{1},W_{2}})=\left(\begin{array}{c|c} I_{n} & 0\\ \hline 0 & -I_{m} \end{array}\right)$ \end_inset . \end_layout \begin_layout Subsection Proyecciones y simetrías afines \end_layout \begin_layout Standard Sea \begin_inset Formula ${\cal L}=A+W_{1}$ \end_inset y \begin_inset Formula $V=W_{1}\oplus W_{2}$ \end_inset , la \series bold proyección afín \series default \begin_inset Formula $p$ \end_inset y la \series bold simetría afín \series default \begin_inset Formula $s$ \end_inset sobre \begin_inset Formula ${\cal L}$ \end_inset paralelamente a \begin_inset Formula $W_{2}$ \end_inset son las aplicaciones \begin_inset Formula $p_{{\cal L},W_{2}},s_{{\cal L},W_{2}}:{\cal E}\rightarrow{\cal E}$ \end_inset tales que \begin_inset Formula $p(Q)\in{\cal L}\cap(Q+W_{2})$ \end_inset (conjunto unitario porque las variedades son complementarias) y \begin_inset Formula $s(Q)=p(Q)+\overrightarrow{Qp(Q)}=Q+2\overrightarrow{Qp(Q)}$ \end_inset . Visto de otro modo, si \begin_inset Formula $Q=A+\vec{w}_{1}+\vec{w}_{2}$ \end_inset con \begin_inset Formula $\vec{w}_{1}\in W_{1}$ \end_inset y \begin_inset Formula $\vec{w}_{2}\in W_{2}$ \end_inset , entonces \begin_inset Formula $p(Q)=A+\vec{w}_{1}$ \end_inset y \begin_inset Formula $s(Q)=A+\vec{w}_{1}-\vec{w}_{2}$ \end_inset . Si \begin_inset Formula ${\cal L}=\{O\}$ \end_inset entonces \begin_inset Formula $p$ \end_inset es la aplicación constante en \begin_inset Formula $O$ \end_inset y \begin_inset Formula $s$ \end_inset es la simetría central de centro \begin_inset Formula $O$ \end_inset . Propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $p_{{\cal L},W_{2}}$ \end_inset y \begin_inset Formula $s_{{\cal L},W_{2}}$ \end_inset son afines con \begin_inset Formula $\overrightarrow{p_{{\cal L},W_{2}}}=\pi_{W_{1},W_{2}}$ \end_inset y \begin_inset Formula $\overrightarrow{s_{{\cal L},W_{2}}}=\sigma_{W_{1},W_{2}}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $\overrightarrow{AQ}=\vec{w}_{1}+\vec{w}_{2}$ \end_inset y \begin_inset Formula $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$ \end_inset con \begin_inset Formula $\vec{u}_{1},\vec{w}_{1}\in W_{1},\vec{u}_{2},\vec{w}_{2}\in W_{2}$ \end_inset , entonces \begin_inset Formula \[ p(Q+\vec{u})=p(A+(\vec{w}_{1}+\vec{u}_{1})+(\vec{w}_{2}+\vec{u}_{2}))=A+(\vec{w}_{1}+\vec{u}_{1})=(A+\vec{w}_{1})+\vec{u}_{1}=p(A)+\pi(\vec{u}) \] \end_inset La simetría se hace de forma análoga. \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula ${\cal L}=\text{Fix}(p)$ \end_inset y \begin_inset Formula $W_{2}=\text{Nuc}(\pi)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $\vec{w}_{1}\in W_{1},\vec{w}_{2}\in W_{2}$ \end_inset , \begin_inset Formula \[ Q:=A+\vec{w}_{1}+\vec{w}_{2}\in\text{Fix}(p)\iff\vec{w}_{2}=0\iff Q=A+\vec{w}_{1}\iff Q\in{\cal L} \] \end_inset \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula ${\cal L}=\text{Fix}(s)$ \end_inset y \begin_inset Formula $W_{2}=\text{Opp}(\sigma)$ \end_inset . \end_layout \begin_layout Standard Dada una transformación afín \begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ \end_inset , \begin_inset Formula $f\text{ es una proyección afín (con }{\cal L}=\text{Fix}(f)\text{ y }W_{2}=\text{Nuc}(\overrightarrow{f})\text{)}\iff f\text{ es idempotente}\iff\overrightarrow{f}^{2}=\overrightarrow{f}\land\text{Fix}(f)\neq\emptyset$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[1\implies2]$ \end_inset \begin_inset Formula $f^{2}$ \end_inset y \begin_inset Formula $f$ \end_inset actúan igual sobre los puntos de \begin_inset Formula $\text{Fix}(f)\neq\emptyset$ \end_inset , pues ambas los fijan, y \begin_inset Formula $\overrightarrow{f^{2}}=\overrightarrow{f}^{2}=\overrightarrow{f}$ \end_inset , luego \begin_inset Formula $f^{2}=f$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[2\implies3]$ \end_inset \begin_inset Formula $\overrightarrow{f}^{2}=\overrightarrow{f^{2}}\overset{f^{2}=f}{=}\overrightarrow{f}$ \end_inset , luego \begin_inset Formula $\overrightarrow{f}$ \end_inset es proyección vectorial. Por otro lado, dado \begin_inset Formula $P\in{\cal E}$ \end_inset , \begin_inset Formula $f(P)=f(f(P))\in\text{Fix}(f)\neq\emptyset$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[3\implies1]$ \end_inset Sea \begin_inset Formula $A\in\text{Fix}(f)$ \end_inset , entonces \begin_inset Formula $\text{Fix}(f)=A+\text{Inv}(\overrightarrow{f})$ \end_inset , pero \begin_inset Formula $\overrightarrow{f}$ \end_inset es la proyección de base \begin_inset Formula $\text{Inv}(\overrightarrow{f})$ \end_inset y dirección \begin_inset Formula $\text{Nuc}(\overrightarrow{f})$ \end_inset . Ahora bien, dados \begin_inset Formula $\vec{w}_{1}\in\text{Inv}(\overrightarrow{f}),\vec{w}_{2}\in\text{Nuc}(\overrightarrow{f})$ \end_inset , \begin_inset Formula $f(A+\vec{w}_{1}+\vec{w}_{2})=f(A)+\overrightarrow{f}(\vec{w}_{1}+\vec{w}_{2})=A+\vec{w}_{1}$ \end_inset , luego \begin_inset Formula $f$ \end_inset es la proyección de base \begin_inset Formula $A+\text{Inv}(\overrightarrow{f})=\text{Fix}(f)$ \end_inset y dirección \begin_inset Formula $\text{Nuc}(\overrightarrow{f})$ \end_inset . \end_layout \begin_layout Standard Dada una transformación afín \begin_inset Formula $f$ \end_inset , \begin_inset Formula $f\text{ es una simetría afín (con }{\cal L}=\text{Fix}(f)\text{ y }W_{2}=\text{Opp}(\overrightarrow{f})\text{)}\iff f\text{ es involutiva}\iff\overrightarrow{f}^{2}=id_{V}\land\text{Fix}(f)\neq\emptyset$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[1\implies2]$ \end_inset \begin_inset Formula $f^{2}$ \end_inset e \begin_inset Formula $id_{{\cal E}}$ \end_inset actúan igual sobre los puntos de \begin_inset Formula $\text{Fix}(f)$ \end_inset , pues ambos los fijan, y \begin_inset Formula $\overrightarrow{f^{2}}=\overrightarrow{f}^{2}=id_{V}$ \end_inset , luego \begin_inset Formula $f^{2}=f$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[2\implies3]$ \end_inset \begin_inset Formula $\overrightarrow{f}^{2}=\overrightarrow{f^{2}}=\overrightarrow{id_{{\cal E}}}=id_{V}$ \end_inset . Por otro lado, dado \begin_inset Formula $P\in{\cal E}$ \end_inset y sea \begin_inset Formula $A\coloneqq \frac{P+f(P)}{2}$ \end_inset entonces \begin_inset Formula $f(A)=\frac{f(P)+f(f(P))}{2}=\frac{f(P)+P}{2}=A\in\text{Fix}(f)\neq\emptyset$ \end_inset . \end_layout \begin_layout Labeling \labelwidthstring 00.00.0000 \begin_inset Formula $[3\implies1]$ \end_inset Sea \begin_inset Formula $A\in\text{Fix}(f)$ \end_inset , entonces \begin_inset Formula $\text{Fix}(f)=A+\text{Inv}(\overrightarrow{f})$ \end_inset , pero \begin_inset Formula $\overrightarrow{f}$ \end_inset es la simetría de base \begin_inset Formula $\text{Inv}(\overrightarrow{f})$ \end_inset y dirección \begin_inset Formula $\text{Opp}(\overrightarrow{f})$ \end_inset . Ahora bien, dados \begin_inset Formula $\vec{w}_{1}\in\text{Inv}(\overrightarrow{f}),\vec{w}_{2}\in\text{Opp}(\overrightarrow{f})$ \end_inset , \begin_inset Formula $f(A+\vec{w}_{1}+\vec{w}_{2})=f(A)+\overrightarrow{f}(\vec{w}_{1}+\vec{w}_{2})=A+\vec{w}_{1}-\vec{w}_{2}$ \end_inset , luego \begin_inset Formula $f$ \end_inset es la simetría de base \begin_inset Formula $A+\text{Inv}(\overrightarrow{f})=\text{Fix}(f)$ \end_inset y dirección \begin_inset Formula $\text{Opp}(\overrightarrow{f})$ \end_inset . \end_layout \end_body \end_document