#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Orientación \end_layout \begin_layout Standard Dada una superficie regular \begin_inset Formula $S$ \end_inset , un \series bold campo de vectores \series default sobre \begin_inset Formula $S$ \end_inset es una función \begin_inset Formula $\xi:S\to\mathbb{R}^{3}$ \end_inset , y es \series bold tangente \series default si \begin_inset Formula $\xi(p)\in T_{p}S$ \end_inset para todo \begin_inset Formula $p\in S$ \end_inset , \series bold normal \series default si \begin_inset Formula $\xi(p)\in(T_{p}S)^{\bot}$ \end_inset para todo \begin_inset Formula $p\in S$ \end_inset y \series bold unitario \series default si \begin_inset Formula $|\xi(p)|=1$ \end_inset para todo \begin_inset Formula $p\in S$ \end_inset . Llamamos \begin_inset Formula $\mathfrak{X}(S)$ \end_inset al conjunto de campos de vectores tangentes sobre \begin_inset Formula $S$ \end_inset y \begin_inset Formula $\mathfrak{X}(S)^{\bot}$ \end_inset al conjunto de campos de vectores normales sobre \begin_inset Formula $S$ \end_inset . \end_layout \begin_layout Standard Una \series bold orientación \series default de una superficie regular \begin_inset Formula $S$ \end_inset es un campo de vectores diferenciable, normal y unitario sobre \begin_inset Formula $S$ \end_inset . \begin_inset Formula $S$ \end_inset es \series bold orientable \series default si admite una orientación, si y sólo si existe un campo \begin_inset Formula $\xi$ \end_inset normal y diferenciable sobre \begin_inset Formula $S$ \end_inset que no se anula en ningún punto, pues las orientaciones son de esta forma y, dado \begin_inset Formula $\xi$ \end_inset , basta tomar la orientación \begin_inset Formula $N(p)\coloneqq \xi(p)/|\xi(p)|$ \end_inset . Una orientación \begin_inset Formula $N$ \end_inset de \begin_inset Formula $S$ \end_inset da a cada \begin_inset Formula $p\in S$ \end_inset un sentido de giro para \begin_inset Formula $T_{p}S$ \end_inset dado por el producto vectorial en \begin_inset Formula $\mathbb{R}^{3}$ \end_inset . \begin_inset Formula $S$ \end_inset está orientada cuando se ha escogido una orientación concreta, en cuyo caso dicha orientación es su \series bold aplicación de Gauss \series default . \end_layout \begin_layout Standard Ejemplos: \begin_inset Note Comment status open \begin_layout Enumerate La banda de Möbius se puede expresar como la imagen de \begin_inset Formula $X:\mathbb{R}\times(-1,1)\to\mathbb{R}^{3}$ \end_inset dada por \begin_inset Formula \[ X(u,v):=\left((2-v\sin\tfrac{u}{2})\sin u,(2-v\sin\tfrac{u}{2})\cos u,v\cos\tfrac{u}{2}\right). \] \end_inset Esta es una superficie regular no orientable. \end_layout \begin_deeper \begin_layout Plain Layout Claramente \begin_inset Formula $X$ \end_inset es diferenciable, y es inyectiva en \begin_inset Formula $U_{1}\coloneqq (0,2\pi)\times(-1,1)$ \end_inset y en \begin_inset Formula $U_{2}\coloneqq (-\pi,\pi)\times(-1,1)$ \end_inset . Su diferencial es \begin_inset Formula \[ dX(u,v)\equiv\begin{pmatrix}-\frac{v}{2}\cos\frac{u}{2}\sin u+(2-v\sin\frac{u}{2})\cos u & -\sin\frac{u}{2}\sin u\\ -\frac{v}{2}\cos\frac{u}{2}\cos u-(2-v\sin\frac{u}{2})\sin u & -\sin\frac{u}{2}\cos u\\ -\frac{v}{2}\sin\frac{u}{2} & \cos\frac{u}{2} \end{pmatrix}, \] \end_inset y el determinante de las dos primeras filas es \begin_inset Formula \[ -\sin\frac{u}{2}\left(-\frac{v}{2}\cos\frac{u}{2}\begin{vmatrix}\sin u & \sin u\\ \cos u & \cos u \end{vmatrix}+\left(2-v\sin\frac{u}{2}\right)\begin{vmatrix}\cos u & \sin u\\ -\sin u & \cos u \end{vmatrix}\right)=-\sin\frac{u}{2}\left(2-v\sin\frac{u}{2}\right), \] \end_inset lo que solo se anula cuando \begin_inset Formula $u\in\{2k\pi\}_{k\in\mathbb{Z}}$ \end_inset , pero en tal caso \begin_inset Formula \[ dX(u,v)\equiv\begin{pmatrix}2 & 0\\ -\frac{v}{2} & 0\\ 0 & 1 \end{pmatrix} \] \end_inset y el determinante de la submatriz resultante de quitar la segunda fila es \begin_inset Formula $2\neq0$ \end_inset . Esto prueba que la banda de Möbius es una superficie. \end_layout \end_deeper \end_inset \end_layout \begin_layout Enumerate El plano \begin_inset Formula $p_{0}+\langle v\rangle^{\bot}\subseteq\mathbb{R}^{3}$ \end_inset admite la orientación \begin_inset Formula $N(p)\coloneqq v/|v|$ \end_inset . \end_layout \begin_layout Enumerate Dados \begin_inset Formula $f:\mathbb{R}^{3}\to\mathbb{R}$ \end_inset \begin_inset Formula ${\cal C}^{2}$ \end_inset y un valor regular \begin_inset Formula $c$ \end_inset de \begin_inset Formula $f$ \end_inset , la superficie de nivel \begin_inset Formula $S\coloneqq f^{-1}(c)$ \end_inset admite la orientación \begin_inset Formula \[ N(p):=\frac{\nabla f(p)}{|\nabla f(p)|}, \] \end_inset donde \begin_inset Formula $\nabla f(p)\coloneqq (\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p))$ \end_inset es el \series bold gradiente \series default de \begin_inset Formula $f$ \end_inset en \begin_inset Formula $p$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $\alpha\coloneqq (x,y,z):I\to S$ \end_inset una curva diferenciable con \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $v\coloneqq \alpha'(0)\in T_{p}S$ \end_inset , para \begin_inset Formula $t\in I$ \end_inset es \begin_inset Formula $f(\alpha(t))=c$ \end_inset por ser \begin_inset Formula $\alpha(t)\in S$ \end_inset , luego derivando, \begin_inset Formula $\frac{\partial f}{\partial x}(\alpha(t))x'(t)+\frac{\partial f}{\partial y}(\alpha(t))y'(t)+\frac{\partial f}{\partial z}(\alpha(t))z'(t)=0$ \end_inset y \begin_inset Formula $\nabla f(p)\bot v$ \end_inset . Además, \begin_inset Formula $\nabla f(p)\neq0$ \end_inset porque \begin_inset Formula $p\in S=f^{-1}(c)$ \end_inset y \begin_inset Formula $c$ \end_inset es un valor regular de \begin_inset Formula $f$ \end_inset , y claramente \begin_inset Formula $\nabla f$ \end_inset es diferenciable. \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\mathbb{S}^{2}(r)$ \end_inset admite la orientación \begin_inset Formula $N(p)=\frac{1}{r}p$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sea \begin_inset Formula $f(x,y,z)\coloneqq x^{2}+y^{2}+z^{2}$ \end_inset , \begin_inset Formula $r^{2}$ \end_inset es un valor regular de \begin_inset Formula $f$ \end_inset y \begin_inset Formula $\mathbb{S}^{2}$ \end_inset es la superficie de nivel \begin_inset Formula $\{p\mid f(p)=r^{2}\}$ \end_inset , luego admite la orientación \begin_inset Formula \[ N(x,y,z)=\frac{\nabla f(x,y,z)}{|\nabla f(x,y,z)|}=\frac{(2x,2y,2z)}{|(2x,2y,2z)|}=\frac{(x,y,z)}{|(x,y,z)|}=\frac{1}{r}(x,y,z). \] \end_inset \end_layout \end_deeper \begin_layout Enumerate El cilindro \begin_inset Formula $\{x^{2}+y^{2}=r^{2}\}$ \end_inset admite la orientación \begin_inset Formula $N(x,y,z)=(x,y,0)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Es una superficie de nivel y tiene pues orientación \begin_inset Formula $N(p)=\frac{(2x,2y,0)}{|(2x,2y,0)|}=\frac{(x,y,0)}{|(x,y,0)|}=\frac{1}{r}(x,y,0)$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Dada \begin_inset Formula $f:U\subseteq\mathbb{R}^{2}\to\mathbb{R}$ \end_inset diferenciable en el abierto \begin_inset Formula $U$ \end_inset , el grafo \begin_inset Formula $S\coloneqq \{(x,y,f(x,y))\}_{x,y\in U}$ \end_inset admite la orientación \begin_inset Formula \[ N(u,v)=\frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}(u,v). \] \end_inset Dada la parametrización \begin_inset Formula $(U,X)$ \end_inset con \begin_inset Formula $X(u,v)\coloneqq (u,v,f(u,v))$ \end_inset , \begin_inset Formula $X_{u}=(1,0,f_{u})$ \end_inset y \begin_inset Formula $X_{v}=(0,1,f_{v})$ \end_inset , y \begin_inset Formula $X_{u}\wedge X_{v}=(-f_{u},-f_{v},1)$ \end_inset . \end_layout \begin_layout Standard Las superficies orientables tienen exactamente dos orientaciones, una opuesta de la otra. \end_layout \begin_layout Standard Dos cartas \begin_inset Formula $(U,X)$ \end_inset y \begin_inset Formula $(U',X')$ \end_inset de \begin_inset Formula $S$ \end_inset son \series bold compatibles \series default si \begin_inset Formula $V\coloneqq X(U)$ \end_inset y \begin_inset Formula $V'\coloneqq X'(U')$ \end_inset son disjuntos o \begin_inset Formula $\det(Jh)>0$ \end_inset , donde \begin_inset Formula $h:X^{-1}(V')\to(X')^{-1}(V)$ \end_inset es el cambio de coordenadas de \begin_inset Formula $V$ \end_inset a \begin_inset Formula $V'$ \end_inset . Un \series bold atlas \series default para \begin_inset Formula $S$ \end_inset es una familia \begin_inset Formula $\{(U_{i},X_{i})\}_{i\in I}$ \end_inset de cartas tales que \begin_inset Formula $\bigcup_{i\in I}X_{i}(U_{i})=S$ \end_inset . Entonces una superficie es orientable si y sólo si existe un atlas cuyas cartas son compatibles. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Sean \begin_inset Formula ${\cal A}\coloneqq \{(U_{i},X_{i})\}_{i\in I}$ \end_inset un atlas de cartas compatibles en \begin_inset Formula $S$ \end_inset , \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $(U,X)\in{\cal A}(I)$ \end_inset con \begin_inset Formula $p\in X(U)$ \end_inset y \begin_inset Formula $N:X(U)\to\mathbb{R}^{3}$ \end_inset dado por \begin_inset Formula \[ N(X(u,v)):=N(u,v):=\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}(u,v), \] \end_inset \begin_inset Formula $N$ \end_inset está bien definido y es diferenciable, normal y unitario. Sean ahora \begin_inset Formula $(\overline{U},\overline{X})\in{\cal A}(I)$ \end_inset con \begin_inset Formula $p\in\overline{X}(\overline{U})$ \end_inset , \begin_inset Formula $\overline{N}(\overline{X}(u,v))\coloneqq \overline{N}(u,v)\coloneqq \frac{\overline{X}_{u}\cap\overline{X}_{v}}{|\overline{X}_{u}\cap\overline{X}_{v}|}(u,v)$ \end_inset y \begin_inset Formula $h$ \end_inset el cambio de coordenadas de \begin_inset Formula $(U,X)$ \end_inset a \begin_inset Formula $(\overline{U},\overline{X})$ \end_inset , para \begin_inset Formula $(u,v)\in X^{-1}(V_{0})$ \end_inset , \begin_inset Formula \[ dX(u,v)=d(\overline{X}\circ h)(u,v)=d\overline{X}(h(u,v))\circ dh(u,v), \] \end_inset luego \begin_inset Formula \[ N(u,v)=\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}=\frac{\det(Jh(u,v))}{|\det(Jh(u,v))|}\frac{\overline{X}_{u}\wedge\overline{X}_{v}}{|\overline{X}_{u}\wedge\overline{X}_{v}|}(h(u,v))\overset{Jh(u,v)>0}{=}\overline{N}(u,v), \] \end_inset de modo que \begin_inset Formula $N(p)$ \end_inset es diferenciable, normal, unitario y no depende de la carta del atlas escogida. \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Sea \begin_inset Formula $N$ \end_inset una orientación de \begin_inset Formula $S$ \end_inset , para toda carta \begin_inset Formula $(U,X)$ \end_inset de \begin_inset Formula $S$ \end_inset es \begin_inset Formula $N(X(q))=\pm\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}(q)$ \end_inset para todo \begin_inset Formula $q\in U$ \end_inset . Entonces, para \begin_inset Formula $p\in S$ \end_inset , podemos tomar una carta \begin_inset Formula $(U_{p},X_{p})$ \end_inset de \begin_inset Formula $S$ \end_inset con \begin_inset Formula $N(X(q))=\frac{(X_{p})_{u}\wedge(X_{p})_{v}}{|(X_{p})_{u}\wedge(X_{p})_{v}|}(q)$ \end_inset para \begin_inset Formula $q\in U$ \end_inset , pues si el normal fuese el opuesto basta cambiar \begin_inset Formula $X_{p}(u,v)$ \end_inset por \begin_inset Formula $X_{p}(v,u)$ \end_inset y \begin_inset Formula $U_{p}$ \end_inset por \begin_inset Formula $\{(u,v)\}_{(v,u)\in U}$ \end_inset , y el resultado se tiene por la antisimetría del producto vectorial. Con esto, dados \begin_inset Formula $a,b\in S$ \end_inset con \begin_inset Formula $V\coloneqq X_{a}(U_{a})\cap X_{b}(U_{b})\neq\emptyset$ \end_inset , queremos ver que el determinante del cambio de coordenadas \begin_inset Formula $h:X_{a}^{-1}(V)\to X_{b}^{-1}(V)$ \end_inset de \begin_inset Formula $(U_{a},X_{a})$ \end_inset a \begin_inset Formula $(U_{b},X_{b})$ \end_inset tiene jacobiano con determinante positivo. En efecto, \begin_inset Formula $\det(Jh)$ \end_inset debe ser no nulo, pero si fuera negativo, para un \begin_inset Formula $p\in V$ \end_inset , sean \begin_inset Formula $q_{a}\coloneqq X_{a}^{-1}(p)$ \end_inset y \begin_inset Formula $q_{b}\coloneqq X_{b}^{-1}(p)$ \end_inset , entonces \begin_inset Formula \[ N(p)=\frac{X_{au}\wedge X_{av}}{|X_{au}\wedge X_{av}|}(q_{a})=\frac{\det(Jh)}{|\det(Jh)|}\frac{X_{bu}\wedge X_{bv}}{|X_{bu}\wedge X_{bv}|}(q_{b})=-N(p), \] \end_inset luego \begin_inset Formula $N(p)=0\#$ \end_inset . Por tanto \begin_inset Formula $\det(Jh)>0$ \end_inset y las cartas del atlas \begin_inset Formula $\{(U_{p},X_{p})\}_{p\in S}$ \end_inset son compatibles. \end_layout \begin_layout Standard En adelante, cuando consideremos una parametrización \begin_inset Formula $(U,X)$ \end_inset , escribiremos \begin_inset Formula $N(u,v)\coloneqq N(X(u,v))$ \end_inset , \begin_inset Formula $N_{u}\coloneqq \frac{\partial(N\circ X)}{\partial u}$ \end_inset y \begin_inset Formula $N_{v}\coloneqq \frac{\partial(N\circ X)}{\partial v}$ \end_inset . En general, para \begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ \end_inset , \begin_inset Formula $f_{x_{i}}\coloneqq \frac{\partial f}{\partial x_{i}}$ \end_inset . \end_layout \begin_layout Section La segunda forma fundamental \end_layout \begin_layout Standard Sea \begin_inset Formula $S$ \end_inset una superficie orientada con aplicación de Gauss \begin_inset Formula $N:S\to\mathbb{S}^{2}$ \end_inset , llamamos \series bold imagen esférica \series default de \begin_inset Formula $S$ \end_inset a \begin_inset Formula $\text{Im}N\subseteq\mathbb{S}^{2}$ \end_inset . Ejemplos: \end_layout \begin_layout Enumerate La imagen esférica de un plano es unipuntual. \end_layout \begin_deeper \begin_layout Standard Dado el plano \begin_inset Formula $\Pi\coloneqq p_{0}+\langle v\rangle\subseteq\mathbb{R}^{3}$ \end_inset , donde podemos suponer \begin_inset Formula $v$ \end_inset unitario, la imagen de \begin_inset Formula $N(p)\coloneqq v$ \end_inset es \begin_inset Formula $\{v\}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate La imagen esférica de \begin_inset Formula $\mathbb{S}^{2}$ \end_inset es \begin_inset Formula $\mathbb{S}^{2}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard La aplicación de Gauss es \begin_inset Formula $\pm1_{\mathbb{S}^{2}}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate La imagen esférica de un grafo \begin_inset Formula $\{(x,y,f(x,y))\}_{(x,y)\in U}$ \end_inset con \begin_inset Formula $f:U\subseteq\mathbb{R}^{2}\to\mathbb{R}$ \end_inset diferenciable está contenida en el hemisferio (estricto) norte o sur. \end_layout \begin_deeper \begin_layout Standard Una orientación es \begin_inset Formula $N(u,v)=\frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}(u,v)$ \end_inset , y como la coordenada \begin_inset Formula $z$ \end_inset de \begin_inset Formula $N$ \end_inset es siempre positiva, \begin_inset Formula $\text{Im}N$ \end_inset está en el hemisferio norte estricto. Con la orientación opuesta está en el hemisferio sur estricto. \end_layout \end_deeper \begin_layout Enumerate La imagen esférica de un cilindro es un circulo máximo de la esfera. \end_layout \begin_deeper \begin_layout Standard Los cilindros se obtienen por un movimiento de \begin_inset Formula $S_{r}\coloneqq \{x^{2}+y^{2}=r^{2}\}$ \end_inset para algún \begin_inset Formula $r>0$ \end_inset , y como su orientación es \begin_inset Formula $N(x,y,z)=\pm\frac{1}{r}(x,y,0)$ \end_inset , \begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0)\mid x^{2}+y^{2}=r^{2}\}=\{(x,y,0)\mid x^{2}+y^{2}=1\}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate El \series bold catenoide \series default , \begin_inset Formula $C\coloneqq \{x^{2}+y^{2}=\cosh^{2}z\}$ \end_inset , tiene imagen esférica \begin_inset Formula $\mathbb{S}^{2}\setminus\{\mathsf{N},\mathsf{S}\}$ \end_inset , donde \begin_inset Formula $\mathsf{N}\coloneqq (0,0,1)$ \end_inset es el \series bold polo norte \series default y \begin_inset Formula $\mathsf{S}\coloneqq (0,0,-1)$ \end_inset es el \series bold polo sur \series default . \end_layout \begin_deeper \begin_layout Standard Sea \begin_inset Formula $f(x,y,z)\coloneqq x^{2}+y^{2}-\cosh^{2}z$ \end_inset , como \begin_inset Formula $f_{x}=2x$ \end_inset , \begin_inset Formula $f_{y}=2y$ \end_inset y \begin_inset Formula $f_{z}=-2\cosh z\sinh z$ \end_inset , el único punto crítico de \begin_inset Formula $f$ \end_inset es el origen, con \begin_inset Formula $f(0)=-1$ \end_inset , de modo que 0 es un valor regular de \begin_inset Formula $f\in{\cal C}^{\infty}$ \end_inset y \begin_inset Formula $C=\{f(x,y,z)=0\}$ \end_inset es una superficie de nivel regular y \begin_inset Formula \begin{align*} N(x,y,z) & =\frac{\nabla f(x,y,z)}{\Vert\nabla f(x,y,z)\Vert}=\frac{(2x,2y,-2\cosh z\sinh z)}{2\sqrt{x^{2}+y^{2}+\cosh^{2}z\sinh^{2}z}}\\ & =\frac{(x,y,-\cosh z\sinh z)}{\sqrt{\cosh^{2}z+\cosh^{2}z\sinh^{2}z}}=\frac{(x,y,-\cosh z\sinh z)}{\cosh^{2}z}. \end{align*} \end_inset Como \begin_inset Formula $N_{1}(p)^{2}+N_{2}(p)^{2}=\frac{x^{2}+y^{2}}{\cosh^{4}z}=\frac{1}{\cosh^{2}z}>0$ \end_inset , no se cubren los polos norte y sur. Sean ahora \begin_inset Formula $(\hat{x},\hat{y},\hat{z})\in\mathbb{S}^{2}\setminus\{\mathsf{N},\mathsf{S}\}$ \end_inset , \begin_inset Formula $z\coloneqq \arg\tanh(-\hat{z})$ \end_inset (que existe porque \begin_inset Formula $\hat{z}\in(-1,1)$ \end_inset ), \begin_inset Formula $x\coloneqq \hat{x}\cosh^{2}z$ \end_inset e \begin_inset Formula $y\coloneqq \hat{y}\cosh^{2}z$ \end_inset , es claro que \begin_inset Formula $N(x,y,z)=(\hat{x},\hat{y},\hat{z})$ \end_inset . Ahora bien, \begin_inset Formula \begin{multline*} x^{2}+y^{2}=(\hat{x}^{2}+\hat{y}^{2})\cosh^{4}z=(1-\hat{z}^{2})\cosh^{4}z=\left(1-\tanh^{2}z\right)\cosh^{4}z=\\ =\frac{\cosh^{2}z-\sinh^{2}z}{\cosh^{2}z}\cosh^{4}z=\frac{\cosh^{4}z}{\cosh^{2}z}=\cosh^{2}z, \end{multline*} \end_inset luego \begin_inset Formula $(x,y,z)\in C$ \end_inset y \begin_inset Formula $N(x,y,z)$ \end_inset cubre \begin_inset Formula $\mathbb{S}^{2}\setminus\{\mathsf{N},\mathsf{S}\}$ \end_inset . \end_layout \end_deeper \begin_layout Standard Para \begin_inset Formula $p\in\mathbb{S}^{2}$ \end_inset es \begin_inset Formula $T_{N(p)}\mathbb{S}^{2}=T_{p}\mathbb{S}^{2}$ \end_inset , pues \begin_inset Formula $N(p)=\pm p$ \end_inset y \begin_inset Formula $T_{-p}\mathbb{S}^{2}=\langle N(-p)\rangle^{\bot}=\langle p\rangle^{\bot}=\langle N(p)\rangle^{\bot}=T_{p}\mathbb{S}^{2}$ \end_inset . \end_layout \begin_layout Standard Sea \begin_inset Formula $S$ \end_inset una superficie regular orientada por \begin_inset Formula $N$ \end_inset , llamamos \series bold operador forma \series default o \series bold endomorfismo de Weingarten \series default en \begin_inset Formula $p\in S$ \end_inset a \begin_inset Formula $A_{p}\coloneqq -dN_{p}:T_{p}S\to T_{p}S$ \end_inset . En efecto, como \begin_inset Formula $N:S\to\mathbb{S}^{2}$ \end_inset , \begin_inset Formula $dN_{p}:T_{p}S\to T_{N(p)}\mathbb{S}^{2}$ \end_inset , pero como la normal en \begin_inset Formula $\mathbb{S}^{2}$ \end_inset es \begin_inset Formula $1_{\mathbb{S}^{2}}$ \end_inset , \begin_inset Formula $T_{p'}\mathbb{S}^{2}=\langle p'\rangle^{\bot}$ \end_inset para todo \begin_inset Formula $p'\in\mathbb{S}^{2}$ \end_inset y en particular \begin_inset Formula $T_{N(p)}\mathbb{S}^{2}=\langle N(p)\rangle^{\bot}=T_{p}S$ \end_inset . \end_layout \begin_layout Standard \begin_inset Formula $A_{p}$ \end_inset es \series bold autoadjunto \series default , es decir, \begin_inset Formula $\langle A_{p}v,w\rangle=\langle v,A_{p}w\rangle$ \end_inset . \series bold Demostración: \series default Por linealidad, basta demostrarlo para una base de \begin_inset Formula $T_{p}S$ \end_inset . Sean \begin_inset Formula $(U,X)$ \end_inset una parametrización de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset y \begin_inset Formula $q\coloneqq (u_{0},v_{0})\coloneqq X^{-1}(p)$ \end_inset , tomamos la base \begin_inset Formula $(X_{u}(q),X_{v}(q))$ \end_inset y queremos ver que \begin_inset Formula $\langle dN_{p}(X_{u}(q)),X_{v}(q)\rangle=\langle X_{u}(q),dN_{p}(X_{v}(q))\rangle$ \end_inset . Sea entonces \begin_inset Formula $\alpha(u)\coloneqq X(u_{0}+u,v_{0})$ \end_inset , \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=X_{u}(q)$ \end_inset , luego \begin_inset Formula $dN_{p}(X_{u}(q))=\frac{\partial(N\circ\alpha)}{\partial u}(0)=\frac{\partial(N\circ X)}{\partial u}(u_{0},v_{0})=N_{u}(u_{0},v_{0})$ \end_inset . Análogamente \begin_inset Formula $dN_{p}(X_{v}(q))=N_{v}(u_{0},v_{0})$ \end_inset , por lo que queda ver que \begin_inset Formula $\langle N_{u},X_{v}\rangle(q)=\langle N_{v},X_{u}\rangle(q)$ \end_inset . Sabemos que \begin_inset Formula $\langle N,X_{u}\rangle=\langle N,X_{v}\rangle=0$ \end_inset , y derivando, \begin_inset Formula $\langle N_{v},X_{u}\rangle+\langle N,X_{uv}\rangle=\langle N_{u},X_{v}\rangle+\langle N,X_{vu}\rangle=0$ \end_inset , pero \begin_inset Formula $X_{uv}=X_{vu}$ \end_inset . \end_layout \begin_layout Standard Ejemplos: \end_layout \begin_layout Enumerate Para un plano, \begin_inset Formula $A_{p}\equiv0$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $N$ \end_inset es fijo, luego \begin_inset Formula $-dN_{p}\equiv0$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Para \begin_inset Formula $\mathbb{S}^{2}(r)$ \end_inset orientada con \begin_inset Formula $N(p)=\pm\frac{1}{r}p$ \end_inset , \begin_inset Formula $A_{p}=\mp\frac{1}{r}1_{T_{p}\mathbb{S}^{2}(r)}$ \end_inset . \end_layout \begin_layout Enumerate Para el cilindro \begin_inset Formula $X(\mathbb{R}^{2})$ \end_inset con \begin_inset Formula $X(u,v)\coloneqq (r\cos u,r\sin u,v)$ \end_inset , si \begin_inset Formula $p\in C$ \end_inset y \begin_inset Formula $q\in X^{-1}(p)$ \end_inset , \begin_inset Formula $A_{p}=\text{diag}(-\frac{1}{r},0)$ \end_inset respecto a la base \begin_inset Formula $(X_{u}(q),X_{v}(q))$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $p=:(x,y,z)$ \end_inset y \begin_inset Formula $q=:(u,v)$ \end_inset , \begin_inset Formula $X_{u}(q)=(-r\sin u,r\cos u,0)$ \end_inset , \begin_inset Formula $X_{v}(q)=(0,0,1)$ \end_inset y, como \begin_inset Formula $N(x,y,z)=\frac{1}{r}(x,y,0)=(\cos u,\sin u,0)$ \end_inset , \begin_inset Formula $N_{u}(q)=(-\sin u,\cos u,0)=-\frac{1}{r}X_{u}$ \end_inset y \begin_inset Formula $N_{v}(q)=0$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Para el \series bold paraboloide hiperbólico \series default o \series bold silla de montar \series default , \begin_inset Formula $S\coloneqq \{y^{2}-x^{2}=z\}=\{(u,v,v^{2}-u^{2})\}_{(u,v)\in\mathbb{R}^{2}}$ \end_inset , \begin_inset Formula $A_{p}(0)\equiv\text{diag}(-2,2)$ \end_inset respecto a la base \begin_inset Formula $(X_{u}(0),X_{v}(0))$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $S$ \end_inset es una superficie porque es el grafo de \begin_inset Formula $f:\mathbb{R}^{2}\to\mathbb{R}$ \end_inset dada por \begin_inset Formula $f(u,v)\coloneqq v^{2}-u^{2}$ \end_inset . Entonces \begin_inset Formula \[ N(u,v)=\frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}=\frac{(2u,-2v,1)}{\sqrt{1+4u^{2}+4v^{2}}}, \] \end_inset luego \begin_inset Formula \begin{align*} N_{u}(u,v) & =\frac{(2(1+4u^{2}+4v^{2})-8u^{2},8uv,-4u)}{(1+4u^{2}+4v^{2})^{3/2}}=\frac{(2(1+4v^{2}),8uv,-4u)}{(1+4u^{2}+4v^{2})^{3/2}},\\ N_{v}(u,v) & =\frac{(-8uv,-2(1+4u^{2}+4v^{2})+8v^{2},-4v)}{(1+4u^{2}+4v^{2})^{3/2}}=\frac{(-8uv,-2(1+4u^{2}),-4v)}{(1+4u^{2}+4v^{2})^{3/2}}, \end{align*} \end_inset y en particular \begin_inset Formula $N_{u}(0)=(2,0,0)$ \end_inset y \begin_inset Formula $N_{v}(0)=(0,-2,0)$ \end_inset , pero \begin_inset Formula $X_{u}(0)=(1,0,0)$ \end_inset y \begin_inset Formula $X_{v}(0)=(0,1,0)$ \end_inset , luego \begin_inset Formula $N_{u}(0)=2X_{u}(0)$ \end_inset y \begin_inset Formula $N_{v}(0)=2X_{v}(0)$ \end_inset . \end_layout \end_deeper \begin_layout Standard El operador forma \begin_inset Formula $A_{p}$ \end_inset lleva asociada unívocamente una forma bilineal simétrica \begin_inset Formula $\sigma_{p}:T_{p}S\times T_{p}S\to\mathbb{R}$ \end_inset dada por \begin_inset Formula $\sigma_{p}(v,w)\coloneqq \langle A_{p}v,w\rangle$ \end_inset , así como una forma cuadrática \begin_inset Formula ${\cal II}_{p}:T_{p}S\to\mathbb{R}$ \end_inset dada por \begin_inset Formula ${\cal II}_{p}(v)\coloneqq \sigma_{p}(v,v)=\langle A_{p}v,v\rangle$ \end_inset . \begin_inset Formula ${\cal II}_{p}$ \end_inset es la \series bold segunda forma fundamental \series default de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset . \end_layout \begin_layout Standard Las tres formas dan la misma información usando la \series bold identidad de polarización: \series default \begin_inset Formula \[ \sigma_{p}(v,w)=\frac{1}{2}\left({\cal II}_{p}(v+w)-{\cal II}_{p}(v)-{\cal II}_{p}(w)\right). \] \end_inset \end_layout \begin_layout Section Curvas geodésica y normal \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular y \begin_inset Formula $\alpha:I\to S$ \end_inset una curva regular, un \series bold campo de vectores a lo largo de \begin_inset Formula $\alpha$ \end_inset \series default es una función \begin_inset Formula $V:I\to\mathbb{R}^{3}$ \end_inset , y es \series bold tangente \series default a \begin_inset Formula $S$ \end_inset (a lo largo de \begin_inset Formula $\alpha$ \end_inset ) si para \begin_inset Formula $t\in S$ \end_inset es \begin_inset Formula $V(t)\in T_{\alpha(t)}S$ \end_inset . Sea \begin_inset Formula $V:I\to\mathbb{R}^{3}$ \end_inset un campo de vectores tangente y diferenciable, llamamos \series bold derivada covariante \series default a \begin_inset Formula \[ \frac{DV}{dt}(t):=\pi_{T_{\alpha(t)}S}V'(t), \] \end_inset la proyección de \begin_inset Formula $V'(t)$ \end_inset en \begin_inset Formula $T_{p}S$ \end_inset . Propiedades: Sean \begin_inset Formula $V,W:I\to T_{p}S$ \end_inset y \begin_inset Formula $f:I\to\mathbb{R}$ \end_inset diferenciables, siendo \begin_inset Formula $I$ \end_inset un intervalo: \end_layout \begin_layout Enumerate \begin_inset Formula $\frac{D(fV)}{dt}=f'V+f\frac{DV}{dt}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $\pi\coloneqq \pi_{T_{\alpha(t)}S}$ \end_inset , \begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi(V')+f'\pi(V)=f\frac{DV}{dt}+f'V$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\frac{D(V+W)}{dt}=\frac{DV}{dt}+\frac{DW}{dt}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi(V')+\pi(W')=\frac{DV}{dt}+\frac{DW}{dt}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt}W\rangle+\langle V,\frac{DW}{dt}\rangle$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$ \end_inset , pero dada una base ortonormal \begin_inset Formula $(v_{1},v_{2},v_{3})$ \end_inset con \begin_inset Formula $T_{p}S=\text{span}\{v_{1},v_{2}\}$ \end_inset , si \begin_inset Formula $\frac{dV}{dt}(t)=\sum_{i}x_{i}v_{i}$ \end_inset y \begin_inset Formula $W(t)=\sum_{i}y_{i}v_{i}$ \end_inset , \begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi(\frac{dV}{dt}(t)),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$ \end_inset , y análogamente para \begin_inset Formula $\langle V,\frac{dW}{dt}\rangle$ \end_inset , luego \begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle$ \end_inset . \end_layout \end_deeper \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular orientada por \begin_inset Formula $N$ \end_inset y \begin_inset Formula $\alpha:I\to S$ \end_inset una curva, entonces \begin_inset Formula $\alpha'(t)\in T_{\alpha(t)}S$ \end_inset para \begin_inset Formula $t\in I$ \end_inset , pero en general \begin_inset Formula $\alpha''(t)\notin T_{\alpha(t)}S$ \end_inset , aunque se escribe de forma única como la suma de una \series bold aceleración tangencial \series default o \series bold intrínseca \series default \begin_inset Formula $\alpha''(t)^{\top}\in T_{\alpha(t)}S$ \end_inset y una \series bold aceleración normal \series default o \series bold extrínseca \series default \begin_inset Formula $\alpha''(t)^{\bot}\in\text{span}\{N(\alpha(t))\}$ \end_inset . Como \begin_inset Formula $\alpha''(t)^{\top}=\frac{D\alpha'}{dt}$ \end_inset , \begin_inset Formula \[ \alpha''(t)=\frac{D\alpha'}{dt}(t)+\langle\alpha''(t),N(\alpha(t))\rangle N(\alpha(t)). \] \end_inset \end_layout \begin_layout Standard Sea \begin_inset Formula $\alpha:I\to S$ \end_inset una curva parametrizada por longitud de arco, el \series bold triedro de Darboux \series default es la base ortonormal positivamente orientada \begin_inset Formula $(\alpha'(s),J\alpha'(s)\coloneqq \alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ \end_inset . Entonces \begin_inset Formula \[ \frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s), \] \end_inset donde \begin_inset Formula $\kappa_{g}\coloneqq \langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ \end_inset , es la \series bold curvatura geodésica \series default de \begin_inset Formula $\alpha$ \end_inset , cuyo signo depende de \begin_inset Formula $N$ \end_inset . En efecto, \begin_inset Formula $\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0$ \end_inset , y \begin_inset Formula $\kappa_{g}(s)=\langle\frac{D\alpha'}{ds}(s),J\alpha'(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle$ \end_inset , pero \begin_inset Formula $J\alpha'(s)$ \end_inset puede ser un vector o su opuesto según lo sea \begin_inset Formula $N$ \end_inset . \end_layout \begin_layout Standard Dada una curva \begin_inset Formula $\alpha:I\to S$ \end_inset , \begin_inset Formula ${\cal II}_{\alpha(t)}(\alpha'(t))=\langle\alpha''(t),N(\alpha(t))\rangle$ \end_inset . En efecto, como \begin_inset Formula $\alpha'(t)\in T_{\alpha(t)}S$ \end_inset para cada \begin_inset Formula $t$ \end_inset , \begin_inset Formula $\langle\alpha'(t),N(\alpha(t))\rangle=0$ \end_inset y, derivando, \begin_inset Formula $\langle\alpha''(t),N(\alpha(t))\rangle+\langle\alpha'(t),(N\circ\alpha)'(t)\rangle=0$ \end_inset , pero \begin_inset Formula $(N\circ\alpha)'(t)=dN_{\alpha(t)}(\alpha'(t))$ \end_inset , luego \begin_inset Formula $\langle\alpha''(t),N(\alpha(t))\rangle=-\langle\alpha'(t),dN_{\alpha(t)}(\alpha'(t))\rangle=\langle\alpha'(t),A_{\alpha(t)}\alpha'(t)\rangle={\cal II}_{\alpha(t)}(\alpha'(t))$ \end_inset . \end_layout \begin_layout Standard Entonces, dados \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $v\in T_{p}S$ \end_inset unitario, llamamos \series bold curvatura normal \series default de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset en la dirección de \begin_inset Formula $v$ \end_inset a \begin_inset Formula $\kappa_{n}(v,p)\coloneqq {\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$ \end_inset , siendo \begin_inset Formula $\alpha:(-\delta,\delta)\to S$ \end_inset una curva con \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=v$ \end_inset . \end_layout \begin_layout Standard Ejemplos: \end_layout \begin_layout Enumerate Un plano tiene curvatura normal 0 en todo punto y dirección. \end_layout \begin_deeper \begin_layout Standard Como \begin_inset Formula $A_{p}=0$ \end_inset , \begin_inset Formula $\kappa_{n}(v,p)={\cal II}_{p}(v)=\langle A_{p}v,v\rangle=0$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\mathbb{S}^{2}(r)$ \end_inset tiene curvatura normal constante \begin_inset Formula $-\frac{1}{r}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Como \begin_inset Formula $N(p)=\frac{1}{r}p$ \end_inset , \begin_inset Formula $\kappa_{n}(v,p)=\langle A_{p}v,v\rangle=\langle-\frac{1}{r}v,v\rangle=-\frac{1}{r}|v|^{2}=-\frac{1}{r}$ \end_inset . \end_layout \end_deeper \begin_layout Standard Dados \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $v\in T_{p}S$ \end_inset unitario y \begin_inset Formula $\Pi_{v}\coloneqq \text{span}\{v,N(p)\}$ \end_inset , llamamos \series bold sección normal \series default \begin_inset Formula $C_{v}$ \end_inset a la curva regular plana resultante de intersecar \begin_inset Formula $S$ \end_inset con \begin_inset Formula $\Pi_{v}$ \end_inset . Sea entonces \begin_inset Formula $\alpha:I\to S$ \end_inset una parametrización por arco de \begin_inset Formula $C_{v}$ \end_inset con \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=v$ \end_inset , entonces \begin_inset Formula $\kappa_{n}(v,p)=\kappa(0)$ \end_inset , siendo \begin_inset Formula $\kappa$ \end_inset la curvatura de \begin_inset Formula $\alpha$ \end_inset como curva plana. En efecto, como \begin_inset Formula $v\in T_{p}S$ \end_inset , \begin_inset Formula $v\bot N(p)$ \end_inset y el vector normal es \begin_inset Formula $\mathbf{n}=J_{\Pi_{v}}v=\pm N(p)$ \end_inset , y como todavía no hemos orientado el plano podemos tomar \begin_inset Formula $\mathbf{n}=N(p)$ \end_inset , pero entonces \begin_inset Formula $\kappa_{n}(v,p)=\langle\alpha''(0),N(p)\rangle=\langle\kappa(0)\mathbf{n}(0),N(p)\rangle=\kappa(0)$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula $\alpha:I\to S$ \end_inset es una curva parametrizada por arco, \begin_inset Formula $\alpha''(s)=\kappa_{g}(s)J\alpha'(s)+\kappa_{n}(s)N(\alpha(s))$ \end_inset , siendo \begin_inset Formula $\kappa_{n}(s)\coloneqq \kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$ \end_inset , luego \begin_inset Formula \[ \kappa(s)^{2}=\kappa_{g}(s)^{2}+\kappa_{n}(s)^{2}. \] \end_inset \end_layout \begin_layout Section Curvaturas principales \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{AAlG} \end_layout \end_inset \end_layout \begin_layout Standard Toda matriz simétrica real \begin_inset Formula $A\in{\cal M}_{m}(\mathbb{R})$ \end_inset admite una matriz ortogonal \begin_inset Formula $P$ \end_inset tal que \begin_inset Formula $P^{-1}AP=P^{t}AP$ \end_inset es diagonal. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard Dados una superficie regular \begin_inset Formula $S$ \end_inset orientada y \begin_inset Formula $p\in S$ \end_inset , existe una base ortonormal \begin_inset Formula $(e_{1},e_{2})$ \end_inset en la que \begin_inset Formula $A_{p}$ \end_inset es diagonal, pues \begin_inset Formula $A_{p}$ \end_inset es simétrica. Si \begin_inset Formula $\kappa_{1}(p)$ \end_inset y \begin_inset Formula $\kappa_{2}(p)$ \end_inset son los valores propios asociados respectivamente a \begin_inset Formula $e_{1}$ \end_inset y \begin_inset Formula $e_{2}$ \end_inset , podemos suponer que \begin_inset Formula $\kappa_{1}(p)\leq\kappa_{2}(p)$ \end_inset , y llamamos \series bold curvaturas principales \series default de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset a \begin_inset Formula $\kappa_{1}(p)$ \end_inset y \begin_inset Formula $\kappa_{2}(p)$ \end_inset y \series bold direcciones principales \series default a \begin_inset Formula $e_{1}$ \end_inset y \begin_inset Formula $e_{2}$ \end_inset , o a todos los vectores unitarios de \begin_inset Formula $T_{p}S$ \end_inset si \begin_inset Formula $\kappa_{1}(p)=\kappa_{2}(p)$ \end_inset , pues en tal caso todos los vectores no nulos son propios al ser \begin_inset Formula $A_{p}$ \end_inset una homotecia. Se tiene \begin_inset Formula $\kappa_{1}(p)=\kappa_{n}(e_{1},p)$ \end_inset y \begin_inset Formula $\kappa_{2}(p)=\kappa_{n}(e_{2},p)$ \end_inset , pues \begin_inset Formula $\kappa_{n}(e_{i},p)=\langle A_{p}e_{i},e_{i}\rangle=\langle\kappa_{i}(p)e_{i},e_{i}\rangle=\kappa_{i}(p)$ \end_inset . \end_layout \begin_layout Enumerate Todas las direcciones del plano y la esfera son principales. \end_layout \begin_deeper \begin_layout Standard Como \begin_inset Formula $\kappa_{n}$ \end_inset es constante, \begin_inset Formula $\kappa_{1}(p)=\kappa_{2}(p)$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate El cilindro \begin_inset Formula $\{x^{2}+y^{2}=r^{2}\}$ \end_inset tiene como curvaturas principales \begin_inset Formula $-\frac{1}{r}$ \end_inset y 0. \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $C\coloneqq \{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\coloneqq (r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ \end_inset , \begin_inset Formula $p=(x,y,z)\in C$ \end_inset y la orientación \begin_inset Formula $N(p)\coloneqq \frac{1}{r}(x,y,0)$ \end_inset , entonces \begin_inset Formula $X_{u}=(-r\sin u,r\cos u,0)$ \end_inset , \begin_inset Formula $X_{v}=e_{3}$ \end_inset y \begin_inset Formula $N(u,v)=(\cos u,\sin u,0)$ \end_inset , luego \begin_inset Formula $A_{p}=-(-\sin u,\cos u,0)=-\frac{1}{r}X_{u}$ \end_inset y por tanto \begin_inset Formula $A_{p}\equiv\text{diag}(-\frac{1}{r},0)$ \end_inset con la base \begin_inset Formula $(X_{u},X_{v})$ \end_inset de \begin_inset Formula $T_{p}S$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate La silla de montar tiene curvaturas principales \begin_inset Formula $-2$ \end_inset y 2 en el origen. \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $A_{p}\equiv\text{diag}(-2,2)$ \end_inset . \end_layout \end_deeper \begin_layout Standard Una \series bold línea de curvatura \series default en una superficie regular orientada \begin_inset Formula $S$ \end_inset es una curva \begin_inset Formula $\alpha:I\to S$ \end_inset tal que \begin_inset Formula $\alpha'(t)$ \end_inset es una dirección principal de \begin_inset Formula $\alpha(t)$ \end_inset para todo \begin_inset Formula $t\in I$ \end_inset . Si las curvaturas principales son distintas en todo punto de un abierto \begin_inset Formula $V\subseteq S$ \end_inset , por cada \begin_inset Formula $p\in V$ \end_inset pasan dos únicas líneas de curvatura y estas se cortan de forma ortogonal. \end_layout \begin_layout Standard \series bold Fórmula de Euler: \series default Sean \begin_inset Formula $S$ \end_inset una superficie regular orientada, \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $\kappa_{1}(p)\leq\kappa_{2}(p)$ \end_inset las curvaturas principales de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset , \begin_inset Formula $e_{1}$ \end_inset y \begin_inset Formula $e_{2}$ \end_inset las respectivas direcciones principales, \begin_inset Formula $v\in T_{p}S$ \end_inset y \begin_inset Formula $\theta$ \end_inset tal que \begin_inset Formula $\cos\theta=\langle e_{1},v\rangle$ \end_inset , entonces \begin_inset Formula $\kappa_{n}(v,p)=\kappa_{1}(p)\cos^{2}\theta+\kappa_{2}(p)\sin^{2}\theta$ \end_inset . En efecto, sea \begin_inset Formula $v=:\cos\omega e_{1}+\sin\omega e_{2}$ \end_inset , \begin_inset Formula $\kappa_{n}(v,p)=\langle A_{p}v,v\rangle=\langle\kappa_{1}(p)\cos\omega e_{1}+\kappa_{2}(p)\cos\omega e_{2},\cos\omega e_{1}+\sin\omega e_{2}\rangle=\kappa_{1}(p)\cos^{2}\omega+\kappa_{2}(p)\sin^{2}\omega$ \end_inset , y aunque \begin_inset Formula $\omega=\pm\theta+2k\pi$ \end_inset para algún \begin_inset Formula $k\in\mathbb{Z}$ \end_inset , el coseno y por tanto el cuadrado del seno coinciden. \end_layout \begin_layout Standard Con esto, \begin_inset Formula $\kappa_{1}(p)=\min\{\kappa_{n}(v,p)\}_{|v|=1}$ \end_inset y \begin_inset Formula $\kappa_{2}(p)=\max\{\kappa_{n}(v,p)\}_{|v|=1}$ \end_inset , pues por la fórmula, si \begin_inset Formula $|v|=1$ \end_inset , \begin_inset Formula $\kappa_{n}(v,p)=\kappa_{1}(p)(1-\sin^{2}\theta)+\kappa_{2}(p)\sin^{2}\theta$ \end_inset para algún \begin_inset Formula $\theta$ \end_inset . Llamamos \series bold curvatura mínima \series default a \begin_inset Formula $\kappa_{1}(p)$ \end_inset y \series bold curvatura máxima \series default a \begin_inset Formula $\kappa_{2}(p)$ \end_inset . La \series bold curvatura de Gauss \series default de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p\in S$ \end_inset es \begin_inset Formula $K(p)\coloneqq \det A_{p}=\kappa_{1}(p)\kappa_{2}(p)$ \end_inset , y la \series bold curvatura media \series default es \begin_inset Formula $H(p)\coloneqq \frac{1}{2}\text{tr}A_{p}=\frac{1}{2}(\kappa_{1}(p)+\kappa_{2}(p))$ \end_inset . \end_layout \begin_layout Standard Las curvaturas máxima, mínima y media cambian de signo al cambiar de orientación. La curvatura de Gauss no, pues es el producto de dos curvaturas que cambian de signo a la vez. \end_layout \begin_layout Standard Sea \begin_inset Formula $S$ \end_inset una superficie regular, \begin_inset Formula $p\in S$ \end_inset es \series bold elíptico \series default si \begin_inset Formula $K(p)>0$ \end_inset , \series bold hiperbólico \series default si \begin_inset Formula $K(p)<0$ \end_inset , \series bold parabólico \series default si \begin_inset Formula $K(p)=0$ \end_inset pero \begin_inset Formula $A_{p}\not\equiv0$ \end_inset y \series bold llano \series default o \series bold plano \series default si \begin_inset Formula $A_{p}\equiv0$ \end_inset . Ejemplos: \end_layout \begin_layout Enumerate Los puntos de un plano son planos. \end_layout \begin_layout Enumerate Los puntos de una esfera son elípticos. \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $r$ \end_inset es el radio, \begin_inset Formula $K(p)=(-\frac{1}{r})^{2}=\frac{1}{r^{2}}>0$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate El origen en la silla de montar es hiperbólico. \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $A_{p}\equiv\text{diag}(-2,2)$ \end_inset respecto de cierta base, luego \begin_inset Formula $K(p)=-4$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Los puntos de un cilindro son parabólicos. \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $r$ \end_inset es el radio, \begin_inset Formula $A_{p}\equiv\text{diag}(-\frac{1}{r},0)$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate En \begin_inset Formula $\{z=(x^{2}+y^{2})^{2}\}$ \end_inset , el origen es un punto plano. \begin_inset Note Comment status open \begin_layout Plain Layout La superficie es el grafo \begin_inset Formula $S\coloneqq \{X(u,v)\coloneqq (u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ \end_inset , de modo que \begin_inset Formula $X_{u}=(1,0,2(u^{2}+v^{2})u)$ \end_inset , \begin_inset Formula $X_{v}=(0,1,2(u^{2}+v^{2})v)$ \end_inset , \begin_inset Formula $N=\frac{(-4(u^{2}+v^{2})u,-4(u^{2}+v^{2})v,1)}{\sqrt{16(u^{2}+v^{2})^{2}+1}}$ \end_inset , \begin_inset Formula $N_{u}=\frac{(-4(3u^{2}+v^{2})(16(u^{2}+v^{2})^{2}+1)+256(u^{2}+v^{2})^{2}u^{2},-8uv(16(u^{2}+v^{2})^{2}+1)+256(u^{2}+v^{2})^{2}uv,64(u^{2}+v^{2})u)}{(16(u^{2}+v^{2})^{2}+1)^{3/2}}$ \end_inset y entonces \begin_inset Formula $N_{u}(0,0)=(0,0,0)$ \end_inset y, por simetría, \begin_inset Formula $N_{v}(0,0)=(0,0,0)$ \end_inset , por lo que \begin_inset Formula $A_{p}\equiv0$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Standard En una superficie regular \begin_inset Formula $S$ \end_inset orientada, \begin_inset Formula $p\in S$ \end_inset es un \series bold punto umbilical \series default si \begin_inset Formula $\kappa_{1}(p)=\kappa_{2}(p)$ \end_inset . \begin_inset Formula $S$ \end_inset es \series bold totalmente umbilical \series default si todos sus puntos son umbilicales. Así, el plano y la esfera son totalmente umbilicales. \end_layout \begin_layout Standard Como \series bold teorema \series default , toda superficie regular, orientable con orientación \begin_inset Formula ${\cal C}^{2}$ \end_inset , conexa y totalmente umbilical es un trozo de esfera o plano. \end_layout \begin_layout Standard \series bold Demostración: \series default Sea \begin_inset Formula $S$ \end_inset la superficie y \begin_inset Formula $N$ \end_inset una orientación de \begin_inset Formula $S$ \end_inset , para \begin_inset Formula $p\in S$ \end_inset es \begin_inset Formula $H(p)=\kappa_{1}(p)=\kappa_{2}(p)$ \end_inset , luego \begin_inset Formula $A_{p}\equiv\text{diag}(H(p),H(p))$ \end_inset y \begin_inset Formula $A_{p}=H(p)1_{T_{p}S}$ \end_inset . \begin_inset Formula $H:S\to\mathbb{R}$ \end_inset es diferenciable, y queremos ver que es constante. Sean \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $(U,X)$ \end_inset una parametrización de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset , \begin_inset Formula $q\coloneqq (u_{0},v_{0})\coloneqq X^{-1}(p)$ \end_inset y \begin_inset Formula $\alpha(u)\coloneqq X(u_{0}+u,v_{0})$ \end_inset , como \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=q$ \end_inset , \begin_inset Formula $dH_{p}(X_{u}(q))=\frac{d(H\circ\alpha)}{dt}(0)=\frac{d}{dt}(H(X(u_{0}+u,v_{0})))(0)=(H\circ X)_{u}(q)$ \end_inset , y por simetría \begin_inset Formula $dH_{p}(X_{v}(q))=\frac{\partial(H\circ X)}{\partial v}(q)$ \end_inset . \end_layout \begin_layout Standard Como \begin_inset Formula $A_{p}=H(p)1_{T_{p}S}$ \end_inset , \begin_inset Formula $(H\circ X)(q)X_{u}(q)=H(p)X_{u}(q)=A_{p}(X_{u}(q))=-dN_{p}(X_{u}(q))=-(N\circ X)(q)$ \end_inset , y como esto es cierto para todo \begin_inset Formula $q\in U$ \end_inset , \begin_inset Formula $(N\circ X)_{u}=-(H\circ X)X_{u}$ \end_inset , y por simetría \begin_inset Formula $(N\circ X)_{v}=-(H\circ X)X_{v}$ \end_inset . Derivando, \begin_inset Formula $(N\circ X)_{uv}=-(H\circ X)_{v}X_{u}-(H\circ X)X_{uv}$ \end_inset y \begin_inset Formula $(N\circ X)_{vu}=-(H\circ X)_{u}X_{v}-(H\circ X)X_{vu}$ \end_inset , y como las derivadas cruzadas coinciden, \begin_inset Formula $(H\circ X)_{v}X_{u}=(H\circ X)_{u}X_{v}$ \end_inset . Como \begin_inset Formula $(X_{u}(q),X_{v}(q))$ \end_inset es una base en cada \begin_inset Formula $q\in U$ \end_inset , necesariamente \begin_inset Formula $(H\circ X)_{u},(H\circ X)_{v}\equiv0$ \end_inset , luego \begin_inset Formula $dH_{p}(X_{u}(q)),dH_{p}(X_{v}(q))=0$ \end_inset y al ser \begin_inset Formula $S$ \end_inset conexa, \begin_inset Formula $H\equiv c$ \end_inset para algún \begin_inset Formula $c\in\mathbb{R}$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula $c=0$ \end_inset , \begin_inset Formula $H\equiv0$ \end_inset y \begin_inset Formula $dN_{p}=-A_{p}\equiv0$ \end_inset , luego \begin_inset Formula $N$ \end_inset es constante en algún \begin_inset Formula $a\in\mathbb{R}^{3}$ \end_inset . Sean ahora \begin_inset Formula $\phi(p)\coloneqq \langle p,a\rangle$ \end_inset , \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $v\in T_{p}S$ \end_inset y \begin_inset Formula $\alpha:I\to S$ \end_inset una curva con \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=v$ \end_inset , entonces \begin_inset Formula $d\phi_{p}(v)=\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}(\langle\alpha(t),a\rangle)(0)=\langle\alpha'(0),a\rangle=\langle v,a\rangle\overset{a=N(p)}{=}0$ \end_inset , luego \begin_inset Formula $\phi$ \end_inset es constante en algún \begin_inset Formula $d\in\mathbb{R}$ \end_inset y \begin_inset Formula $S\subseteq\{\langle p,a\rangle=d\}=\{\langle p-p',a\rangle=0\}$ \end_inset para algún \begin_inset Formula $p'$ \end_inset con \begin_inset Formula $\langle p',a\rangle=d$ \end_inset , pero \begin_inset Formula $\{\langle p-p',a\rangle=0\}=p'+\langle a\rangle^{\bot}$ \end_inset , luego \begin_inset Formula $S$ \end_inset esta contenido en un plano. \end_layout \begin_layout Standard Si \begin_inset Formula $c\neq0$ \end_inset , sea \begin_inset Formula $\phi:S\to\mathbb{R}^{3}$ \end_inset la función diferenciable dada por \begin_inset Formula $\phi(p)\coloneqq p+\frac{1}{c}N(p)$ \end_inset , para \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $v\in T_{p}S$ \end_inset y una curva \begin_inset Formula $\alpha:I\to S$ \end_inset con \begin_inset Formula $\alpha(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=v$ \end_inset , entonces \begin_inset Formula \begin{align*} d\phi_{p}(v) & =\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}\left(\alpha(t)+\frac{1}{c}N(\alpha(t))\right)(0)=\alpha'(0)+\frac{1}{c}(N\circ\alpha)'(0)\\ & =v+\frac{1}{c}dN_{p}(v)=v-\frac{1}{c}A_{p}v=v-\frac{1}{c}cv=0, \end{align*} \end_inset luego \begin_inset Formula $\phi$ \end_inset es constante en algún \begin_inset Formula $a\in\mathbb{R}^{3}$ \end_inset . Pero para \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $p-a=-\frac{1}{c}N(p)$ \end_inset , luego \begin_inset Formula $\Vert p-a\Vert^{2}=\frac{1}{c^{2}}$ \end_inset y todos los puntos de \begin_inset Formula $S$ \end_inset están en la esfera \begin_inset Formula $a+\mathbb{S}^{2}(\frac{1}{c^{2}})$ \end_inset . \end_layout \begin_layout Section Parámetros de la segunda forma fundamental \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular orientada por \begin_inset Formula $N$ \end_inset y \begin_inset Formula $(U,X)$ \end_inset una parametrización de \begin_inset Formula $S$ \end_inset , los \series bold coeficientes de la segunda forma fundamental \series default son \begin_inset Formula $e,f,g:U\to\mathbb{R}$ \end_inset dados por \begin_inset Formula \begin{align*} e & :=\langle N,X_{uu}\rangle=-\langle N_{u},X_{u}\rangle,\\ f & :=\langle N,X_{uv}\rangle=-\langle N_{v},X_{u}\rangle=-\langle N_{u},X_{v}\rangle,\\ g & :=\langle N,X_{vv}\rangle=-\langle N_{v},X_{v}\rangle, \end{align*} \end_inset y para \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $v\in T_{p}S$ \end_inset , si \begin_inset Formula $q\coloneqq X^{-1}(p)$ \end_inset y \begin_inset Formula $v=v_{1}X_{u}(q)+v_{2}X_{v}(q)$ \end_inset , entonces \begin_inset Formula \[ {\cal II}_{p}(v):=v_{1}^{2}e+2v_{1}v_{2}f+v_{2}^{2}g. \] \end_inset \series bold Demostración: \series default \begin_inset Formula $\langle N,X_{u}\rangle=\langle N,X_{v}\rangle=0$ \end_inset , y derivando se obtiene \begin_inset Formula $\langle N_{u},X_{u}\rangle+\langle N,X_{uu}\rangle=0$ \end_inset , \begin_inset Formula $\langle N_{v},X_{u}\rangle+\langle N,X_{uv}\rangle=0$ \end_inset , \begin_inset Formula $\langle N_{u},X_{v}\rangle+\langle N,X_{vu}\rangle=0$ \end_inset y \begin_inset Formula $\langle N_{v},X_{v}\rangle+\langle N,X_{vv}\rangle=0$ \end_inset , lo que nos da las igualdades en los coeficientes teniendo en cuenta que \begin_inset Formula $\langle N,X_{uv}\rangle=\langle N,X_{vu}\rangle$ \end_inset . \end_layout \begin_layout Standard Sea \begin_inset Formula $q\coloneqq X^{-1}(p)=(u(0),v(0))$ \end_inset , por linealidad \begin_inset Formula $dN_{p}(v)=v_{1}dN_{p}(X_{u}(q))+v_{2}dN_{p}(X_{v}(q))=v_{1}N_{u}(q)+v_{2}N_{v}(q)$ \end_inset . Entonces, evaluando las derivadas de \begin_inset Formula $X$ \end_inset y \begin_inset Formula $N$ \end_inset en \begin_inset Formula $q$ \end_inset , d \begin_inset Formula \begin{align*} {\cal II}_{p}(v) & =\langle A_{p}v,v\rangle=-\langle dN_{p}(v),v\rangle=-\langle v_{1}N_{u}+v_{2}N_{v},v_{1}X_{u}+v_{2}X_{v}\rangle\\ & =v_{1}^{2}\langle N_{u},X_{u}\rangle-v_{1}v_{2}\langle N_{u},X_{v}\rangle-v_{1}v_{2}\langle N_{v},X_{u}\rangle-v_{2}^{2}\langle N_{v},X_{v}\rangle\\ & =v_{1}^{2}e+v_{1}v_{2}f+v_{2}^{2}g. \end{align*} \end_inset \end_layout \begin_layout Standard Si \begin_inset Formula \[ dN_{p}\equiv\begin{pmatrix}a_{11} & a_{12}\\ a_{21} & a_{22} \end{pmatrix} \] \end_inset respecto de la base \begin_inset Formula $(X_{u},X_{v})$ \end_inset , entonces \begin_inset Formula \[ \begin{pmatrix}-e & -f\\ -f & -g \end{pmatrix}=\begin{pmatrix}a_{11} & a_{21}\\ a_{12} & a_{22} \end{pmatrix}\begin{pmatrix}E & F\\ F & G \end{pmatrix} \] \end_inset y tenemos las \series bold fórmulas de Weingarten: \series default \begin_inset Formula \begin{align*} a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}. \end{align*} \end_inset \end_layout \begin_layout Standard \series bold Demostración: \series default \begin_inset Formula \begin{align*} -e & =\langle N_{u},X_{u}\rangle=\langle a_{11}X_{u}+a_{21}X_{v},X_{u}\rangle=a_{11}E+a_{21}F,\\ -f & =\langle N_{v},X_{u}\rangle=\langle a_{12}X_{u}+a_{22}X_{v},X_{u}\rangle=a_{12}E+a_{22}F\\ & =\langle N_{u},X_{v}\rangle=\langle a_{11}X_{u}+a_{21}X_{v},X_{v}\rangle=a_{11}F+a_{21}G,\\ -g & =\langle N_{v},X_{v}\rangle=\langle a_{12}X_{u}+a_{22}X_{v},X_{v}\rangle=a_{12}F+a_{22}G. \end{align*} \end_inset Despejando, \begin_inset Formula \[ \begin{pmatrix}a_{11} & a_{12}\\ a_{12} & a_{22} \end{pmatrix}=-\begin{pmatrix}e & f\\ f & g \end{pmatrix}\begin{pmatrix}E & F\\ F & G \end{pmatrix}^{-1}=-\frac{1}{EG-F^{2}}\begin{pmatrix}e & f\\ f & g \end{pmatrix}\begin{pmatrix}G & -F\\ -F & E \end{pmatrix}, \] \end_inset lo que nos da las fórmulas de Weingarten. \end_layout \begin_layout Standard De aquí, \end_layout \begin_layout Standard \begin_inset Formula \begin{align*} K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}}, \end{align*} \end_inset y las curvaturas principales son \begin_inset Formula \[ \kappa_{i}(p)=H(p)\pm\sqrt{H(p)^{2}-K(p)}. \] \end_inset \end_layout \begin_layout Standard \series bold Demostración: \series default \begin_inset Formula \begin{align*} K(p) & =\det A_{p}=\det(dN_{p})=\frac{1}{EG-F^{2}}((fF-eG)(fF-gE)-(gF-fG)(eF-fE))\\ & =\frac{1}{(EG-F^{2})^{2}}(f^{2}F^{2}-fgEF-efFG+egEG-egF^{2}+fgEF+efFG-f^{2}EG)\\ & =\frac{f^{2}F^{2}+egEG-egF^{2}-f^{2}EG}{(EG-F^{2})^{2}}=\frac{(EG-F^{2})(eg-f^{2})}{(EG-F^{2})^{2}},\\ H(p) & =\frac{1}{2}\text{tr}A_{p}=-\frac{1}{2}\text{tr}(dN_{p})=-\frac{1}{2}\frac{2fF-eG-gE}{EG-F^{2}}. \end{align*} \end_inset Un \begin_inset Formula $\lambda\in\mathbb{R}$ \end_inset es un valor propio de \begin_inset Formula $A_{p}$ \end_inset si y sólo si \begin_inset Formula \begin{align*} 0 & =\det(\lambda1_{T_{p}S}-A_{p})=\det(dN_{p}+\lambda1_{T_{p}S})=\begin{vmatrix}a_{11}+\lambda & a_{12}\\ a_{21} & a_{22}+\lambda \end{vmatrix}\\ & =\lambda^{2}+(a_{11}+a_{22})\lambda+(a_{11}a_{22}-a_{12}a_{21})=\lambda^{2}-2H(p)+K(p), \end{align*} \end_inset si y sólo si \begin_inset Formula $\lambda=H(p)\pm\sqrt{H(p)^{2}-K(p)}$ \end_inset . \end_layout \begin_layout Section Isometrías locales \end_layout \begin_layout Standard Una \series bold isometría local \series default entre dos superficies regulares \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset es una función diferenciable \begin_inset Formula $\phi:S_{1}\to S_{2}$ \end_inset tal que para \begin_inset Formula $p\in S_{1}$ \end_inset y \begin_inset Formula $v,w\in T_{p}S_{1}$ \end_inset es \begin_inset Formula $\langle d\phi_{p}(v),d\phi_{p}(w)\rangle=\langle v,w\rangle$ \end_inset , es decir, tal que \begin_inset Formula $d\phi_{p}:T_{p}S_{1}\to T_{\phi(p)}S_{2}$ \end_inset es una isometría lineal. Entonces \begin_inset Formula $\phi$ \end_inset conserva ángulos, longitudes y áreas de \begin_inset Formula $S_{1}$ \end_inset a \begin_inset Formula $S_{2}$ \end_inset , pero su existencia no implica que exista una isometría lineal \begin_inset Formula $\psi:S_{2}\to S_{1}$ \end_inset . \end_layout \begin_layout Standard Una \series bold isometría \series default ( \series bold global \series default ) entre \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset es una isometría local que es un difeomorfismo. \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset son ( \series bold globalmente \series default ) \series bold isométricas \series default si existe una isometría global entre ellas, y son \series bold localmente isométricas \series default si para cada \begin_inset Formula $p\in S_{1}$ \end_inset hay un entorno \begin_inset Formula $V\subseteq S_{1}$ \end_inset de \begin_inset Formula $p$ \end_inset y una isometría global \begin_inset Formula $\phi:V\to\phi(V)\subseteq S_{2}$ \end_inset y para cada \begin_inset Formula $q\in S_{2}$ \end_inset hay un entorno \begin_inset Formula $W\subseteq S_{2}$ \end_inset de \begin_inset Formula $p$ \end_inset y una isometría global \begin_inset Formula $\psi:W\to\phi(W)\subseteq S_{1}$ \end_inset . Si existe una isometría local entre \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset , \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset son localmente isométricos. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{TS} \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula $(\pi_{1}(X,x),*)$ \end_inset es un grupo, llamado \series bold grupo fundamental \series default [...] de \begin_inset Formula $X$ \end_inset relativo al \series bold punto base \series default \begin_inset Formula $x$ \end_inset [...] \begin_inset Formula $X$ \end_inset es \series bold simplemente conexo \series default si es conexo por caminos y \begin_inset Formula $\pi_{1}(X,x)$ \end_inset es el grupo trivial [...] para todo \begin_inset Formula $x\in X$ \end_inset . [...] Todo subespacio estrellado de \begin_inset Formula $\mathbb{R}^{n}$ \end_inset es simplemente conexo. [...] El grupo fundamental de \begin_inset Formula $\mathbb{S}^{1}$ \end_inset es isomorfo a \begin_inset Formula $(\mathbb{Z},+)$ \end_inset . [...] \begin_inset Formula $\pi_{1}(X\times Y,(x,y))\cong\pi_{1}(X,x)\times\pi_{1}(Y,y)$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard Existe una isometría local entre el plano \begin_inset Formula $\Pi\coloneqq \{z=0\}$ \end_inset y el cilindro \begin_inset Formula $C\coloneqq \mathbb{S}^{1}\times\mathbb{R}$ \end_inset , pero las superficies no son globalmente isométricas. \series bold Demostración: \series default Como el plano es estrellado, su grupo fundamental es el grupo trivial, y como el cilindro es \begin_inset Formula $\mathbb{S}^{1}\times\mathbb{R}$ \end_inset , su grupo fundamental es \begin_inset Formula $\pi_{1}(\mathbb{S}^{1}\times\mathbb{R},e_{1})\cong\pi_{1}(\mathbb{S}_{1},e_{1})\times\pi_{1}(\mathbb{R},0)\cong(\mathbb{Z},+)\times1\cong(\mathbb{Z},+)$ \end_inset . Como los grupos fundamentales no son isomorfos, \begin_inset Formula $\Pi$ \end_inset y \begin_inset Formula $C$ \end_inset no son homeomorfos y por tanto tampoco isométricos. Sea ahora \begin_inset Formula $\phi:\Pi\to C$ \end_inset dada por \begin_inset Formula $\phi(x,y,0)\coloneqq (\cos x,\sin x,y)$ \end_inset , que es diferenciable. Para \begin_inset Formula $p=(x,y,0)\in\Pi$ \end_inset , \begin_inset Formula $T_{p}S=\Pi$ \end_inset , y si \begin_inset Formula $v=(v_{1},v_{2},0)\in T_{p}S$ \end_inset , sea \begin_inset Formula $\alpha:I\to\Pi$ \end_inset dada por \begin_inset Formula $\alpha(t)\coloneqq p+tv$ \end_inset , \begin_inset Formula \[ d\phi_{p}(v)=\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}(\cos(x+tv_{1}),\sin(x+tv_{1}),y+tv_{2})(0)=(-v_{1}\sin x,v_{1}\cos x,v_{2}). \] \end_inset Para ver que \begin_inset Formula $\phi$ \end_inset conserva el producto escalar, basta ver que conserva módulos, pero \begin_inset Formula $|d\phi_{p}(v)|^{2}=v_{1}^{2}+v_{2}^{2}=|v|^{2}$ \end_inset . \end_layout \begin_layout Standard Como \series bold teorema \series default , sea \begin_inset Formula $\phi:S_{1}\to S_{2}$ \end_inset una isometría local entre superficies regulares, para todo \begin_inset Formula $p\in S_{1}$ \end_inset existen parametrizaciones \begin_inset Formula $(U,X)$ \end_inset de \begin_inset Formula $S_{1}$ \end_inset en \begin_inset Formula $p$ \end_inset y \begin_inset Formula $(U,\overline{X})$ \end_inset de \begin_inset Formula $S_{2}$ \end_inset en \begin_inset Formula $\phi(p)$ \end_inset con los mismos parámetros de la primera forma fundamental. \series bold Demostración: \series default Sean \begin_inset Formula $(\tilde{U},X)$ \end_inset una parametrización de \begin_inset Formula $S_{1}$ \end_inset en \begin_inset Formula $p$ \end_inset y \begin_inset Formula $\overline{X}:\phi\circ X:\tilde{U}\to S_{2}$ \end_inset , como \begin_inset Formula $\phi$ \end_inset es un difeomorfismo local, existe un entorno \begin_inset Formula $V\subseteq S_{1}$ \end_inset de \begin_inset Formula $p$ \end_inset en el que \begin_inset Formula $\phi:V\to\phi(V)$ \end_inset es un difeomorfismo, por lo que si \begin_inset Formula $U\coloneqq X^{-1}(V)\subseteq\tilde{U}$ \end_inset , restringiendo \begin_inset Formula $\overline{X}$ \end_inset a \begin_inset Formula $U$ \end_inset , \begin_inset Formula $(U,\overline{X})$ \end_inset es una parametrización de \begin_inset Formula $S_{2}$ \end_inset en \begin_inset Formula $\phi(p)$ \end_inset . Entonces, si \begin_inset Formula $q\coloneqq X^{-1}(p)$ \end_inset , \begin_inset Formula $d\overline{X}_{q}=d(\phi\circ X)_{q}=d\phi_{p}\circ dX_{q}$ \end_inset , luego \begin_inset Formula $\overline{X}_{u}(q)=d\phi_{p}(X_{u}(q))$ \end_inset y \begin_inset Formula $\overline{X}_{v}(q)=d\phi_{p}(X_{v}(q))$ \end_inset . Con esto, como \begin_inset Formula $\phi$ \end_inset es una isometría local, \begin_inset Formula $\overline{E}=\langle\overline{X}_{u}(q),\overline{X}_{u}(q)\rangle=\langle d\phi_{p}(X_{u}(q)),d\phi(X_{u}(q))\rangle=\langle X_{u}(q),X_{u}(q)\rangle=E$ \end_inset , y análogamente \begin_inset Formula $\overline{F}=F$ \end_inset y \begin_inset Formula $\overline{G}=G$ \end_inset . \end_layout \begin_layout Standard Como \series bold teorema \series default , dadas dos superficies regulares \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset y dos parametrizaciones \begin_inset Formula $(U,X)$ \end_inset de \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $(U,\overline{X})$ \end_inset de \begin_inset Formula $S_{2}$ \end_inset con los mismos parámetros de la primera forma fundamental, entonces \begin_inset Formula $\phi\coloneqq \overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$ \end_inset es una isometría. \series bold Demostración: \series default Es un difeomorfismo por ser composición de difeomorfismos, y queda ver que conserva productos escalares. Sean \begin_inset Formula $q\in U$ \end_inset y \begin_inset Formula $p\coloneqq X(q)$ \end_inset , \begin_inset Formula $d\phi_{p}\circ dX_{q}=d(\phi\circ X)_{q}=d\overline{X}_{q}$ \end_inset por la regla de la cadena, por lo que \begin_inset Formula $d\phi_{p}(X_{u}(q))=\overline{X}_{u}(q)$ \end_inset y \begin_inset Formula $d\phi_{p}(X_{v}(q))=\overline{X}_{v}(q)$ \end_inset . Por tanto, en \begin_inset Formula $q$ \end_inset , \begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{u})\rangle=\langle\overline{X}_{u},\overline{X}_{u}\rangle=\overline{E}=E=\langle X_{u},X_{u}\rangle$ \end_inset , y de forma análoga \begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{v})\rangle=\langle X_{u},X_{v}\rangle$ \end_inset y \begin_inset Formula $\langle d\phi_{p}(X_{v}),d\phi_{p}(X_{v})\rangle=\langle X_{v},X_{v}\rangle$ \end_inset , pero \begin_inset Formula $(X_{u},X_{v})$ \end_inset es una base de \begin_inset Formula $T_{p}S$ \end_inset , luego \begin_inset Formula $d\phi_{p}$ \end_inset conserva productos escalares. \end_layout \begin_layout Section \lang latin Theorema Egregium \lang spanish de Gauss \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular orientada por \begin_inset Formula $N$ \end_inset y \begin_inset Formula $(U,X)$ \end_inset una parametrización de \begin_inset Formula $S$ \end_inset con la base \begin_inset Formula $(X_{u},X_{v},N)$ \end_inset de \begin_inset Formula $\mathbb{R}^{3}$ \end_inset positivamente orientada. Las \series bold fórmulas de Gauss \series default son \begin_inset Formula \[ \left\{ \begin{aligned}X_{uu} & =\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN,\\ X_{uv} & =\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN,\\ X_{vu} & =\Gamma_{21}^{1}X_{u}+\Gamma_{21}^{2}X_{v}+fN,\\ X_{vv} & =\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN, \end{aligned} \right. \] \end_inset donde los \begin_inset Formula $\Gamma_{ij}^{k}$ \end_inset son los \series bold símbolos de Christoffel \series default , y se basan en que \begin_inset Formula $\langle X_{uu},N\rangle=e$ \end_inset , \begin_inset Formula $\langle X_{uv},N\rangle=\langle X_{vu},N\rangle=f$ \end_inset y \begin_inset Formula $\langle X_{vv},N\rangle=g$ \end_inset . \end_layout \begin_layout Standard \begin_inset Formula $\Gamma_{12}^{1}=\Gamma_{21}^{1}$ \end_inset y \begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{21}^{2}$ \end_inset , pues \begin_inset Formula $X_{uv}=X_{vu}$ \end_inset . Además, \begin_inset Formula \[ \begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\ \Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2} \end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\ -F & E \end{pmatrix}\begin{pmatrix}\frac{E_{u}}{2} & \frac{E_{v}}{2} & F_{v}-\frac{G_{u}}{2}\\ F_{u}-\frac{E_{v}}{2} & \frac{G_{u}}{2} & \frac{G_{v}}{2} \end{pmatrix}. \] \end_inset \series bold Demostración: \series default Multiplicando escalarmente las ecuaciones de Gauss por \begin_inset Formula $X_{u}$ \end_inset y \begin_inset Formula $X_{v}$ \end_inset , \begin_inset Formula \begin{align*} \langle X_{uu},X_{u}\rangle & =\Gamma_{11}^{1}E+\Gamma_{11}^{2}F, & \langle X_{uu},X_{v}\rangle & =\Gamma_{11}^{1}F+\Gamma_{11}^{2}G,\\ \langle X_{uv},X_{u}\rangle & =\Gamma_{12}^{1}E+\Gamma_{12}^{2}F, & \langle X_{uv},X_{v}\rangle & =\Gamma_{12}^{1}F+\Gamma_{12}^{2}G,\\ \langle X_{vv},X_{u}\rangle & =\Gamma_{22}^{1}E+\Gamma_{22}^{2}F, & \langle X_{vv},X_{v}\rangle & =\Gamma_{22}^{1}F+\Gamma_{22}^{2}G. \end{align*} \end_inset Derivando \begin_inset Formula $E$ \end_inset , \begin_inset Formula $F$ \end_inset y \begin_inset Formula $G$ \end_inset respecto a \begin_inset Formula $u$ \end_inset y \begin_inset Formula $v$ \end_inset , \begin_inset Formula \begin{align*} E_{u} & =2\langle X_{uu},X_{u}\rangle, & F_{u} & =\langle X_{uu},X_{v}\rangle+\langle X_{u},X_{vu}\rangle, & G_{u} & =2\langle X_{vu},X_{v}\rangle,\\ E_{v} & =2\langle X_{uv},X_{u}\rangle, & F_{v} & =\langle X_{uv},X_{v}\rangle+\langle X_{u},X_{vv}\rangle, & G_{v} & =2\langle X_{vv},X_{v}\rangle, \end{align*} \end_inset por lo que \begin_inset Formula \begin{align*} \langle X_{uu},X_{u}\rangle & =\frac{E_{u}}{2}, & \langle X_{uv},X_{u}\rangle & =\frac{E_{v}}{2}, & \langle X_{vv},X_{u}\rangle & =F_{v}-\langle X_{uv},X_{v}\rangle=F_{v}-\frac{G_{u}}{2},\\ \langle X_{uv},X_{v}\rangle & =\frac{G_{u}}{2}, & \langle X_{vv},X_{v}\rangle & =\frac{G_{v}}{2}, & \langle X_{uu},X_{v}\rangle & =F_{u}-\langle X_{u},X_{vu}\rangle=F_{u}-\frac{E_{v}}{2}. \end{align*} \end_inset Igualando queda el sistema \begin_inset Formula \[ \left\{ \begin{aligned}E\Gamma_{11}^{1}+F\Gamma_{11}^{2} & =\frac{1}{2}E_{u}, & E\Gamma_{12}^{1}+F\Gamma_{12}^{2} & =\frac{1}{2}E_{v}, & E\Gamma_{22}^{1}+F\Gamma_{22}^{2} & =F_{v}-\frac{1}{2}G_{u},\\ F\Gamma_{11}^{1}+G\Gamma_{11}^{2} & =F_{u}-\frac{1}{2}E_{v}, & F\Gamma_{12}^{1}+G\Gamma_{12}^{2} & =\frac{1}{2}G_{u}, & F\Gamma_{22}^{1}+G\Gamma_{22}^{2} & =\frac{1}{2}G_{v}, \end{aligned} \right. \] \end_inset que se divide en tres sistemas disjuntos de izquierda a derecha. Para el primero, \begin_inset Formula \[ \begin{pmatrix}\Gamma_{11}^{1}\\ \Gamma_{12}^{2} \end{pmatrix}=\begin{pmatrix}E & F\\ F & G \end{pmatrix}^{-1}\begin{pmatrix}\frac{1}{2}E_{u}\\ F_{u}-\frac{E_{v}}{2} \end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\ -F & E \end{pmatrix}\begin{pmatrix}\frac{1}{2}E_{u}\\ F_{u}-\frac{E_{v}}{2} \end{pmatrix}, \] \end_inset y para los otros dos es análogo. \end_layout \begin_layout Standard La \series bold ecuación de Gauss \series default es \begin_inset Formula \[ \Gamma_{11}^{1}\Gamma_{12}^{2}+(\Gamma_{11}^{2})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{2}-\Gamma_{12}^{1}\Gamma_{11}^{2}-(\Gamma_{12}^{2})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{2}=EK, \] \end_inset la primera \series bold ecuación de Mainardi-Codazzi \series default es \begin_inset Formula \[ e\Gamma_{12}^{1}+f(\Gamma_{12}^{2}-\Gamma_{11}^{1})-g\Gamma_{11}^{2}=e_{v}-f_{u} \] \end_inset y, además, \begin_inset Formula \begin{align*} (\Gamma_{11}^{1})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{1}-(\Gamma_{12}^{1})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{1} & =-FK. \end{align*} \end_inset \series bold Demostración: \series default \begin_inset Formula $X_{uuv}=X_{uvu}$ \end_inset , y sustituyendo \begin_inset Formula $X_{uu}$ \end_inset y \begin_inset Formula $X_{vv}$ \end_inset según las fórmulas de Gauss, \begin_inset Formula \begin{multline*} 0=X_{uuv}-X_{uvu}=(\Gamma_{11}^{1})_{v}X_{u}+\Gamma_{11}^{1}X_{uv}+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}X_{vv}+e_{v}N+eN_{v}-\\ -(\Gamma_{12}^{1})_{u}X_{u}-\Gamma_{12}^{1}X_{uu}-(\Gamma_{12}^{2})_{u}X_{v}-\Gamma_{12}^{2}X_{vu}-f_{u}N-fN_{u}. \end{multline*} \end_inset Sustituyendo con las fórmulas de Gauss, \begin_inset Formula \begin{multline*} 0=(\Gamma_{11}^{1})_{v}X_{u}+\Gamma_{11}^{1}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)-\\ -(\Gamma_{12}^{1})_{u}X_{u}-\Gamma_{12}^{1}(\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN)-(\Gamma_{12}^{2})_{u}X_{v}-\Gamma_{12}^{2}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)+\\ +e_{v}N+e(a_{12}X_{u}+a_{22}X_{v})-f_{u}N-f(a_{11}X_{u}+a_{21}X_{v})=:A_{1}X_{u}+B_{1}X_{v}+C_{1}N. \end{multline*} \end_inset Como \begin_inset Formula $(X_{u},X_{v},N)$ \end_inset es base de \begin_inset Formula $\mathbb{R}^{3}$ \end_inset , \begin_inset Formula $A_{1},B_{1},C_{1}=0$ \end_inset . Como \begin_inset Formula $B_{1}=0$ \end_inset , usando las fórmulas de Weingarten, \begin_inset Formula \begin{multline*} \Gamma_{11}^{1}\Gamma_{12}^{2}+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}\Gamma_{22}^{2}-\Gamma_{12}^{1}\Gamma_{11}^{2}-(\Gamma_{12}^{2})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{2}=fa_{21}-ea_{22}=\\ =f\frac{eF-fE}{EG-F^{2}}-e\frac{fF-gE}{EG-F^{2}}=\frac{efF-f^{2}E-efF+egE}{EG-F^{2}}=E\frac{eg-f^{2}}{EG-F^{2}}=EK. \end{multline*} \end_inset \begin_inset Formula $C_{1}=0$ \end_inset nos da \begin_inset Formula \[ \Gamma_{11}^{1}f+\Gamma_{11}^{2}g-\Gamma_{12}^{1}e-\Gamma_{12}^{1}f+e_{v}-f_{u}=0, \] \end_inset de donde se obtiene directamente la primera ecuación de Mainardi-Codazzi, y \begin_inset Formula $A_{1}=0$ \end_inset nos da \begin_inset Formula \begin{multline*} (\Gamma_{11}^{1})_{v}+\Gamma_{11}^{1}\Gamma_{12}^{1}+\Gamma_{11}^{2}\Gamma_{22}^{1}-(\Gamma_{12}^{1})_{u}-\Gamma_{12}^{1}\Gamma_{11}^{1}-\Gamma_{12}^{2}\Gamma_{12}^{1}=(\Gamma_{11}^{1})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{1}-(\Gamma_{12}^{1})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{1}=\\ =fa_{11}-ea_{12}=f\frac{fF-eG}{EG-F^{2}}-e\frac{gF-fG}{EG-F^{2}}=\frac{f^{2}F-egF}{EG-F^{2}}=-FK. \end{multline*} \end_inset \end_layout \begin_layout Standard La curvatura de Gauss depende solo de la primera forma fundamental, pues como \begin_inset Formula $EG-F^{2}>0$ \end_inset , \begin_inset Formula $E\neq0$ \end_inset y por la ecuación de Gauss \begin_inset Formula $K$ \end_inset se puede obtener de \begin_inset Formula $E$ \end_inset y los símbolos de Christoffel, que dependen solo de la primera forma fundamenta l. \end_layout \begin_layout Standard \series bold \lang latin Theorema Egregium \lang spanish de Gauss: \series default La curvatura de Gauss de una superficie regular es invariante por isometrías locales. \series bold Demostración: \series default Sean \begin_inset Formula $\phi:S_{1}\to S_{2}$ \end_inset una isometría local entre superficies regulares, \begin_inset Formula $p\in S_{1}$ \end_inset y \begin_inset Formula $(U,X)$ \end_inset una parametrización de \begin_inset Formula $S_{1}$ \end_inset en \begin_inset Formula $p$ \end_inset con \begin_inset Formula $U$ \end_inset lo suficientemente pequeña para que \begin_inset Formula $\phi|_{V\coloneqq X(U)}:V\to\phi(V)$ \end_inset sea un difeomorfismo, entonces \begin_inset Formula $(U,\overline{X}\coloneqq \phi\circ X)$ \end_inset es una parametrización de \begin_inset Formula $S_{2}$ \end_inset en \begin_inset Formula $\phi(p)$ \end_inset . Entonces, como los coeficientes de la primera forma fundamental son los mismos para ambas parametrizaciones y la curvatura de Gauss solo depende de estos, las curvaturas de Gauss coinciden para el mismo punto de \begin_inset Formula $U$ \end_inset y en particular \begin_inset Formula $K_{1}(p)=K_{2}(\phi(p))$ \end_inset , donde \begin_inset Formula $K_{1}$ \end_inset y \begin_inset Formula $K_{2}$ \end_inset son las curvaturas de Gauss respectivas de \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset . \end_layout \begin_layout Standard En general un difeomorfismo local que conserva la curvatura no es una isometría local. \series bold Demostración: \series default Sean \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset parametrizadas por \begin_inset Formula $X(u,v)\coloneqq (u\cos v,u\sin v,\log u)$ \end_inset y \begin_inset Formula $\overline{X}(u,v)\coloneqq (u\cos v,u\sin v,v)$ \end_inset , entonces \begin_inset Formula \begin{align*} X_{u} & =(\cos v,\sin v,\tfrac{1}{u}), & \overline{X}_{u} & =(\cos v,\sin v,0),\\ X_{v} & =(-u\sin v,u\cos v,0), & \overline{X}_{v} & =(-u\sin v,u\cos v,1),\\ N & =\frac{(-\cos v,-\sin v,u)}{\sqrt{1+u^{2}}}, & \overline{N} & =\frac{(\sin v,-\cos v,u)}{\sqrt{1+u^{2}}}, \end{align*} \end_inset luego \begin_inset Formula $N$ \end_inset y \begin_inset Formula $\overline{N}$ \end_inset se diferencian en alguna transformación ortogonal. Si \begin_inset Formula $\overline{N}=O\circ N$ \end_inset para una transformación ortogonal \begin_inset Formula $O$ \end_inset , entonces \begin_inset Formula $d\overline{N}_{q}=dO_{N(q)}\circ dN_{q}=O\circ dN_{q}$ \end_inset , luego \begin_inset Formula $d\overline{N}_{q}$ \end_inset y \begin_inset Formula $dN_{q}$ \end_inset se diferencian por \begin_inset Formula $O$ \end_inset y por tanto tienen igual determinante, que será la curvatura de Gauss. Sin embargo, \begin_inset Formula $\phi\coloneqq \overline{X}\circ X^{-1}=((x,y,z)\mapsto(x,y,e^{z}))$ \end_inset no es una isometría. \end_layout \begin_layout Standard \begin_inset Note Comment status open \begin_layout Plain Layout \begin_inset Formula \begin{align*} a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}. \end{align*} \end_inset \end_layout \end_inset \end_layout \begin_layout Standard La segunda \series bold ecuación de Mainardi-Codazzi \series default es \begin_inset Formula \[ f_{v}-g_{u}=e\Gamma_{22}^{1}+f(\Gamma_{22}^{2}-\Gamma_{12}^{1})-g\Gamma_{12}^{2}. \] \end_inset \series bold Demostración: \series default Como \begin_inset Formula $X_{vvu}=X_{vuv}$ \end_inset , aplicando las fórmulas de Gauss, \begin_inset Note Comment status open \begin_layout Plain Layout \lang english \begin_inset Formula $gN_{u}$ \end_inset is not Unix. \end_layout \end_inset \begin_inset Formula \begin{multline*} 0=X_{vvu}-X_{vuv}=(\Gamma_{22}^{1})_{u}X_{u}+\Gamma_{22}^{1}X_{uu}+(\Gamma_{22}^{2})_{u}X_{v}+\Gamma_{22}^{2}X_{vu}+g_{u}N+gN_{u}-\\ -(\Gamma_{21}^{1})_{v}X_{u}-\Gamma_{21}^{1}X_{uv}-(\Gamma_{21}^{2})_{v}X_{v}-\Gamma_{21}^{2}X_{vv}-f_{v}N-fN_{v}, \end{multline*} \end_inset y sustituyendo de nuevo, \begin_inset Formula \begin{multline*} 0=(\Gamma_{22}^{1})_{u}X_{u}+\Gamma_{22}^{1}(\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN)+(\Gamma_{22}^{2})_{u}X_{v}+\Gamma_{22}^{2}(\Gamma_{12}^{2}X_{u}+\Gamma_{12}^{2}X_{v}+fN)-\\ -(\Gamma_{12}^{1})_{v}X_{u}-\Gamma_{12}^{1}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)-(\Gamma_{12}^{2})_{v}X_{v}-\Gamma_{12}^{2}(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)+\\ +g_{u}N+g(a_{11}X_{u}+a_{21}X_{v})-f_{v}N-f(a_{12}X_{u}+a_{22}X_{v})=:A_{2}X_{u}+B_{2}X_{v}+C_{2}N. \end{multline*} \end_inset Como antes, \begin_inset Formula $A_{2},B_{2},C_{2}=0$ \end_inset , luego como \begin_inset Formula $C_{2}=0$ \end_inset , \begin_inset Formula $e\Gamma_{22}^{1}+f\Gamma_{22}^{2}-f\Gamma_{12}^{1}-g\Gamma_{12}^{2}=f_{v}-g_{u}$ \end_inset . \end_layout \begin_layout Standard Las \series bold ecuaciones de compatibilidad \series default son la ecuación de Gauss y las dos ecuaciones de Mainardi-Codazzi. \series bold Teorema de Bonnet: \series default Sean \begin_inset Formula $E,F,G,e,f,g:V\to\mathbb{R}$ \end_inset funciones diferenciables en un abierto \begin_inset Formula $V\subseteq\mathbb{R}^{2}$ \end_inset con \begin_inset Formula $E>0$ \end_inset , \begin_inset Formula $G>0$ \end_inset , \begin_inset Formula $EG-F^{2}>0$ \end_inset y que verifican las ecuaciones de compatibilidad, entonces existen un abierto \begin_inset Formula $U\subseteq V$ \end_inset y un difeomorfismo \begin_inset Formula $X:U\to X(U)\subseteq\mathbb{R}^{3}$ \end_inset tales que \begin_inset Formula $(U,X)$ \end_inset es una parametrización de la superficie regular \begin_inset Formula $X(U)$ \end_inset en la que los coeficientes de la primera y segunda formas fundamentales son \begin_inset Formula $E,F,G$ \end_inset y \begin_inset Formula $e,f,g$ \end_inset , respectivamente, y si \begin_inset Formula $U$ \end_inset es conexo y \begin_inset Formula $\overline{X}:U\to\overline{X}(U)$ \end_inset es otro difeomorfismo con los mismos coeficientes de las formas fundamentales primera y segunda, entonces existe un movimiento rígido \begin_inset Formula $M$ \end_inset en \begin_inset Formula $\mathbb{R}^{3}$ \end_inset tal que \begin_inset Formula $\overline{X}=M\circ X$ \end_inset . \end_layout \end_body \end_document