#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Una curva \begin_inset Formula $\gamma:I\to S$ \end_inset es una \series bold geodésica \series default de la superficie regular \begin_inset Formula $S$ \end_inset si \begin_inset Formula $\gamma'$ \end_inset es paralelo. Propiedades: Sea \begin_inset Formula $\gamma:I\to S$ \end_inset una geodésica: \end_layout \begin_layout Enumerate \begin_inset Formula $\Vert\gamma'(t)\Vert$ \end_inset es constante. \end_layout \begin_layout Enumerate \begin_inset Formula $\gamma$ \end_inset es constante si y sólo si existe \begin_inset Formula $t_{0}\in I$ \end_inset con \begin_inset Formula $\gamma'(t_{0})=0$ \end_inset , por lo que toda geodésica no constante es una curva regular. \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Obvio. \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Para \begin_inset Formula $t\in I$ \end_inset , \begin_inset Formula $\Vert\gamma'(t)\Vert=\Vert\gamma'(t_{0})\Vert=0$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate La condición de geodésica se conserva por isometrías locales. \end_layout \begin_deeper \begin_layout Standard La derivada covariante se conserva por ser un concepto intrínseco. \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $\gamma$ \end_inset no es constante, una reparametrización suya es una geodésica si y sólo si el cambio de parámetro es afín. \end_layout \begin_deeper \begin_layout Standard Sea \begin_inset Formula $h:J\to I$ \end_inset un cambio de parámetro y \begin_inset Formula $\alpha\coloneqq \gamma\circ h$ \end_inset , entonces \begin_inset Formula $\alpha'(s)=h'(s)\gamma'(h(s))$ \end_inset y \begin_inset Formula \begin{align*} \frac{D\alpha'}{ds}(s) & =(h''(s)\gamma'(h(s))+h'(s)^{2}\gamma''(h(s)))^{\top}=h''(s)\gamma'(h(s))+h'(s)^{2}\frac{D\gamma'}{dt}(h(s))=\\ & =h''(s)\gamma'(h(s)), \end{align*} \end_inset pues \begin_inset Formula $\frac{D\gamma'}{dt}(h(s))=0$ \end_inset por ser \begin_inset Formula $\gamma$ \end_inset una geodésica. Como \begin_inset Formula $\gamma$ \end_inset no es constante, \begin_inset Formula $\gamma'(h(s))\neq0$ \end_inset en todo \begin_inset Formula $s$ \end_inset , luego \begin_inset Formula $\frac{D\alpha'}{ds}(s)=h''(s)\gamma'(h(s))=0\iff h''(s)=0\iff\exists a,b\in\mathbb{R}:h(s)=as+b$ \end_inset . \end_layout \end_deeper \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular, \begin_inset Formula $\alpha:I\to S$ \end_inset una curva regular y \begin_inset Formula $N:I\to\mathbb{R}^{3}$ \end_inset un campo normal unitario a lo largo de \begin_inset Formula $\alpha$ \end_inset , entonces \begin_inset Formula $\alpha$ \end_inset es una geodésica si y sólo si \begin_inset Formula \[ \alpha''(t)+\langle\alpha'(t),N'(t)\rangle N(t)=0, \] \end_inset sustituyendo en la e.d.o. extrínseca de los campos paralelos. \end_layout \begin_layout Standard Si \begin_inset Formula $(U,X)$ \end_inset es una parametrización de \begin_inset Formula $S$ \end_inset , \begin_inset Formula $\alpha:I\to X(U)$ \end_inset es una curva y \begin_inset Formula $(u,v)\coloneqq X^{-1}\circ\alpha:I\to U$ \end_inset , \begin_inset Formula $\alpha$ \end_inset es una geodésica de \begin_inset Formula $S$ \end_inset si y sólo si \begin_inset Formula \[ \left\{ \begin{aligned}u''+(u')^{2}\Gamma_{11}^{1}(u,v)+2u'v'\Gamma_{12}^{1}(u,v)+(v')^{2}\Gamma_{22}^{1}(u,v) & =0,\\ v''+(u')^{2}\Gamma_{11}^{2}(u,v)+2u'v'\Gamma_{12}^{2}(u,v)+(v')^{2}\Gamma_{22}^{2}(u,v) & =0. \end{aligned} \right. \] \end_inset En efecto, como \begin_inset Formula $\alpha=X(u,v)$ \end_inset , \begin_inset Formula $\alpha'=dX_{(u,v)}(u',v')=u'X_{u}(u,v)+v'X_{v}(u,v)$ \end_inset , y solo hay que sustituir en la e.d.o. intrínseca de los campos paralelos. \end_layout \begin_layout Section Geodésicas maximales \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{EDO} \end_layout \end_inset \end_layout \begin_layout Standard \series bold Teorema de Picard en un abierto: \series default Sean \begin_inset Formula $\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}$ \end_inset abierto y \begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$ \end_inset continua y localmente lipschitziana respecto a la segunda variable, para \begin_inset Formula $(t_{0},x_{0})\in\Omega$ \end_inset existe \begin_inset Formula $K\coloneqq [t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$ \end_inset tal que \begin_inset Formula \[ \left\{ \begin{aligned}\dot{x} & =f(t,x)\\ x(t_{0}) & =x_{0} \end{aligned} \right. \] \end_inset tiene solución única definida en \begin_inset Formula $[t_{0}-\alpha,t_{0}+\alpha]$ \end_inset con gráfica contenida en \begin_inset Formula $K$ \end_inset . \end_layout \begin_layout Standard [...] Sea \begin_inset Formula $\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}$ \end_inset abierto, si para cada \begin_inset Formula $(t_{0},x_{0})\in\Omega$ \end_inset existe un intervalo en que el problema de Cauchy \begin_inset Formula \[ \left\{ \begin{aligned}\dot{x} & =f(t,x)\\ x(t_{0}) & =x_{0} \end{aligned} \right. \] \end_inset tiene solución única, entonces para cualesquiera soluciones \begin_inset Formula $x$ \end_inset e \begin_inset Formula $y$ \end_inset de \begin_inset Formula $\dot{x}=f(t,x)$ \end_inset definidas respectivamente en \begin_inset Formula $I_{x}$ \end_inset e \begin_inset Formula $I_{y}$ \end_inset , si ambas coinciden en un \begin_inset Formula $\xi\in I_{x}\cap I_{y}$ \end_inset , coinciden en toda la intersección. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard Dados un abierto \begin_inset Formula $\Omega\subseteq\mathbb{R}^{m}$ \end_inset y \begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$ \end_inset diferenciable, \begin_inset Formula $f$ \end_inset es localmente lipschitziana. En efecto, para \begin_inset Formula $x\in\Omega$ \end_inset existe \begin_inset Formula $\varepsilon$ \end_inset tal que \begin_inset Formula $\overline{B}(x,\varepsilon)\subseteq\Omega$ \end_inset , y al ser \begin_inset Formula $f'$ \end_inset continua, \begin_inset Formula $(f')(\overline{B}(x,\varepsilon))$ \end_inset está acotada por un cierto \begin_inset Formula $M$ \end_inset y, para \begin_inset Formula $a,b\in B(x,\varepsilon)$ \end_inset , \begin_inset Formula $\Vert f(a)-f(b)\Vert\leq M\Vert a-b\Vert$ \end_inset . \end_layout \begin_layout Standard Como \series bold teorema \series default , sean \begin_inset Formula $S$ \end_inset es una superficie regular, \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $v\in T_{p}S$ \end_inset , existe una única geodésica \begin_inset Formula $\gamma_{v}:I_{v}\to S$ \end_inset tal que \begin_inset Formula $0\in I_{v}$ \end_inset , \begin_inset Formula $\gamma_{v}(0)=p$ \end_inset , \begin_inset Formula $\gamma'_{v}(0)=v$ \end_inset y cualquier otra geodésica que cumpla estas condiciones es una restricción de esta a un subintervalo, y llamamos \series bold geodésica maximal \series default con \series bold condiciones iniciales \series default \begin_inset Formula $p$ \end_inset y \begin_inset Formula $v$ \end_inset a \begin_inset Formula $\gamma_{v}$ \end_inset e \series bold intervalo maximal de existencia \series default a \begin_inset Formula $I_{v}$ \end_inset . \end_layout \begin_layout Standard \series bold Demostración: \series default Sea \begin_inset Formula ${\cal J}_{p,v}\coloneqq \{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ \end_inset . Sean \begin_inset Formula $(X,U)$ \end_inset una carta local de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $p$ \end_inset , \begin_inset Formula $(u_{0},v_{0})\coloneqq X^{-1}(p)$ \end_inset y \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset con \begin_inset Formula $v=aX_{u}(u_{0},v_{0})+bX_{u}(u_{0},v_{0})$ \end_inset , por el teorema de Picard, existe una solución \begin_inset Formula $(u,v):(-\varepsilon,\varepsilon)\to U$ \end_inset de la e.d.o. intrínseca de los campos paralelos con \begin_inset Formula $u(0)=u_{0}$ \end_inset , \begin_inset Formula $v(0)=v_{0}$ \end_inset , \begin_inset Formula $u'(0)=a$ \end_inset y \begin_inset Formula $v'(0)=b$ \end_inset , y entonces \begin_inset Formula $\alpha(t)\coloneqq X(u(t),v(t))$ \end_inset es una geodésica con \begin_inset Formula $\alpha(0)=X(u_{0},v_{0})=p$ \end_inset y \begin_inset Formula $\alpha'(0)=dX_{(u_{0},v_{0})}(a,b)=aX_{u}(u_{0},v_{0})+bX_{v}(u_{0},v_{0})=v$ \end_inset , de modo que \begin_inset Formula $\alpha\in{\cal J}_{p,v}\neq\emptyset$ \end_inset . \end_layout \begin_layout Standard Sean ahora \begin_inset Formula $(I_{1},\alpha_{1}),(I_{2},\alpha_{2})\in{\cal J}_{p,v}$ \end_inset , y queremos ver que \begin_inset Formula $\alpha_{1}(t)=\alpha_{2}(t)$ \end_inset para todo \begin_inset Formula $t\in I_{1}\cap I_{2}$ \end_inset . Como \begin_inset Formula $0\in I_{1}\cap I_{2}$ \end_inset e \begin_inset Formula $I_{1}$ \end_inset e \begin_inset Formula $I_{2}$ \end_inset son abiertos conexos, \begin_inset Formula $I_{1}\cap I_{2}$ \end_inset es abierto y, por el teorema del peine, también conexo, luego es un intervalo. Sea \begin_inset Formula $A\coloneqq \{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ \end_inset , y queremos ver que \begin_inset Formula $A$ \end_inset es abierto y cerrado en \begin_inset Formula $I_{1}\cap I_{2}$ \end_inset y no vacío y por tanto \begin_inset Formula $A=I_{1}\cap I_{2}$ \end_inset . Claramente es no vacío, pues \begin_inset Formula $\alpha_{1}(0)=\alpha_{2}(0)=p$ \end_inset y \begin_inset Formula $\alpha'_{1}(0)=\alpha'_{2}(0)=v$ \end_inset , y es cerrado por ser la anti-imagen del 0 por la función continua \begin_inset Formula $F(t)\coloneqq \Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$ \end_inset . \end_layout \begin_layout Standard Sean ahora \begin_inset Formula $t_{0}\in A$ \end_inset y \begin_inset Formula $(X,U)$ \end_inset una parametrización de \begin_inset Formula $S$ \end_inset en \begin_inset Formula $\alpha_{1}(t_{0})=\alpha_{2}(t_{0})$ \end_inset , existen \begin_inset Formula $\varepsilon_{1}>0$ \end_inset tal que para \begin_inset Formula $t\in(t_{0}-\varepsilon_{1},t_{0}+\varepsilon_{1})$ \end_inset es \begin_inset Formula $\alpha_{1}(t)\in X(U)$ \end_inset y \begin_inset Formula $\varepsilon_{2}>0$ \end_inset tal que para \begin_inset Formula $t\in(t_{0}-\varepsilon_{2},t_{0}+\varepsilon_{2})$ \end_inset es \begin_inset Formula $\alpha_{2}(t)\in X(U)$ \end_inset , y si \begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{1},\varepsilon_{2}\}$ \end_inset , \begin_inset Formula $(u_{1},v_{1})\coloneqq X^{-1}\circ\alpha_{1}$ \end_inset y \begin_inset Formula $(u_{2},v_{2})\coloneqq X^{-1}\circ\alpha_{2}$ \end_inset , entonces \begin_inset Formula $(u_{1},v_{1})$ \end_inset y \begin_inset Formula $(u_{2},v_{2})$ \end_inset son soluciones de la e.d.o. intrínseca de las geodésicas con las mismas condiciones iniciales en \begin_inset Formula $t_{0}$ \end_inset . Por el teorema de Picard, la e.d.o. tiene solución única local para cualesquiera \begin_inset Formula $(u,v)(t_{0})\in U$ \end_inset y \begin_inset Formula $(u',v')(t_{0})\in\mathbb{R}^{2}$ \end_inset , por lo que \begin_inset Formula $(u_{1},v_{1})$ \end_inset y \begin_inset Formula $(u_{2},v_{2})$ \end_inset coinciden en todo \begin_inset Formula $(t_{0}-\varepsilon,t_{0}+\varepsilon)$ \end_inset y \begin_inset Formula $A$ \end_inset es abierto. \end_layout \begin_layout Standard Así, \begin_inset Formula $A=I_{1}\cap I_{2}$ \end_inset . Sea entonces \begin_inset Formula $I_{v}\coloneqq \bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$ \end_inset , \begin_inset Formula $I_{v}$ \end_inset es un intervalo abierto por ser unión de intervalos abiertos que contienen al 0, y definiendo \begin_inset Formula $\gamma_{v}:I_{v}\to S$ \end_inset como \begin_inset Formula $\gamma_{v}(t)=\alpha(t)$ \end_inset para \begin_inset Formula $(I,\alpha)\in{\cal J}_{p,v}$ \end_inset con \begin_inset Formula $t\in I$ \end_inset , entonces \begin_inset Formula $\gamma_{v}$ \end_inset está bien definido por lo anterior y cumple las propiedades. \end_layout \begin_layout Standard \series bold Lema de homogeneidad de las geodésicas: \series default Sean \begin_inset Formula $S$ \end_inset una superficie regular, \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $v\in T_{p}S$ \end_inset , \begin_inset Formula $\gamma_{v}:I_{v}\to S$ \end_inset la geodésica maximal con condiciones iniciales \begin_inset Formula $p$ \end_inset y \begin_inset Formula $v$ \end_inset y \begin_inset Formula $\lambda\in\mathbb{R}^{*}$ \end_inset , entonces \begin_inset Formula $\gamma_{\lambda v}:I_{\gamma v}\to S$ \end_inset viene dada por \begin_inset Formula $I_{\lambda v}=\frac{1}{\lambda}I_{v}=\{\frac{t}{v}\}_{t\in I_{v}}$ \end_inset y \begin_inset Formula $\gamma_{\lambda v}(t)=\gamma_{v}(\lambda t)$ \end_inset para todo \begin_inset Formula $t\in I_{\lambda v}$ \end_inset . \series bold Demostración: \series default Sea \begin_inset Formula $\alpha:I\to S$ \end_inset con \begin_inset Formula $\alpha(t)\coloneqq \gamma_{v}(\lambda t)$ \end_inset , claramente \begin_inset Formula $I=\frac{1}{\lambda}I_{v}$ \end_inset , pero \begin_inset Formula $\alpha$ \end_inset es una reparametrización afín de \begin_inset Formula $\gamma$ \end_inset y por tanto es una geodésica, \begin_inset Formula $\alpha(0)=\gamma(0)=p$ \end_inset y \begin_inset Formula $\alpha'(0)=\lambda\gamma'_{v}(0)=\lambda v$ \end_inset , de modo que por unicidad es \begin_inset Formula $\alpha\equiv\gamma_{\lambda v}|_{I}$ \end_inset e \begin_inset Formula $I=\frac{1}{\lambda}I_{v}\subseteq I_{\lambda v}$ \end_inset . Ahora bien, sea \begin_inset Formula $w\coloneqq \lambda v$ \end_inset y \begin_inset Formula $\beta:I'\to S$ \end_inset dada por \begin_inset Formula $\beta(t)\coloneqq \gamma_{w}(\frac{1}{\lambda}v)$ \end_inset , por el mismo argumento es \begin_inset Formula $I'=\lambda I_{w}=\lambda I_{\lambda v}\subseteq I_{v}$ \end_inset , de modo que \begin_inset Formula $I_{\lambda v}\subseteq\frac{1}{\lambda}I_{v}$ \end_inset e \begin_inset Formula $I_{\lambda v}=\frac{1}{\lambda}I_{v}$ \end_inset , con \begin_inset Formula $\alpha=\gamma_{\lambda v}$ \end_inset . \end_layout \begin_layout Section Ecuaciones diferenciales lineales \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{EDO} \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula $T\in{\cal L}(\mathbb{R}^{n})$ \end_inset [...], el problema de Cauchy \begin_inset Formula \[ \left\{ \begin{aligned}\dot{x} & =Tx\\ x(t_{0}) & =x_{0} \end{aligned} \right. \] \end_inset tiene solución única definida en todo \begin_inset Formula $\mathbb{R}$ \end_inset y dada por \begin_inset Formula $x(t)=e^{(t-t_{0})T}x_{0}$ \end_inset . [...] \end_layout \begin_layout Standard \series bold Cálculo de \begin_inset Formula $e^{At}$ \end_inset \series default [...] Si el polinomio característico de \begin_inset Formula $T\in{\cal L}(E)$ \end_inset , con \begin_inset Formula $E$ \end_inset real o complejo, es [...] \begin_inset Formula $\prod_{k=1}^{p}(t-\lambda_{k})^{n_{k}}$ \end_inset , [...] \begin_inset Formula $E(T,\lambda_{k})\coloneqq \ker(T-\lambda_{k}I)^{n_{k}}$ \end_inset , y [...] \begin_inset Formula $E=E(T,\lambda_{1})\oplus\dots\oplus E(T,\lambda_{p})$ \end_inset [...]. [...] \end_layout \begin_layout Enumerate Hallar los valores propios \begin_inset Formula $\lambda_{1},\dots,\lambda_{r},a_{1}+ib_{1},a_{1}-ib_{1},\dots,a_{s}+ib_{s},a_{s}-ib_{s}$ \end_inset [ \begin_inset Formula $\lambda_{i},a_{i},b_{i}\in\mathbb{R}$ \end_inset ] de \begin_inset Formula $A_{\mathbb{C}}$ \end_inset . \end_layout \begin_layout Enumerate Hallar bases \begin_inset Formula $(w_{k1},\dots,w_{kp_{k}})$ \end_inset de \begin_inset Formula $\mathbb{R}^{n}(A,\lambda_{k})$ \end_inset y \begin_inset Formula $(u_{k1}+iv_{k1},\dots,u_{kq_{k}}+v_{kq_{k}})$ \end_inset de \begin_inset Formula $\mathbb{C}^{n}(A_{\mathbb{C}},a_{k}+ib_{k})$ \end_inset . \end_layout \begin_layout Enumerate Respecto de la base \begin_inset ERT status open \begin_layout Plain Layout { \end_layout \end_inset \begin_inset Formula \begin{align*} {\cal B}:= & (w_{11},\dots,w_{1p_{1}},\dots,w_{r1},\dots,w_{rp_{r}},\\ & \,v_{11},u_{11},\dots,v_{1q_{1}},u_{1q_{1}},\dots,v_{s1},u_{s1},\dots,v_{sq_{s}},u_{sq_{s}}), \end{align*} \end_inset \begin_inset ERT status open \begin_layout Plain Layout } \end_layout \end_inset la matriz semisimple es \begin_inset Formula \[ S_{0}:=\begin{pmatrix}\boxed{D_{1}}\\ & \ddots\\ & & \boxed{D_{r}}\\ & & & \boxed{M_{1}}\\ & & & & \ddots\\ & & & & & \boxed{M_{s}} \end{pmatrix}, \] \end_inset donde \begin_inset ERT status open \begin_layout Plain Layout { \end_layout \end_inset \begin_inset Formula \begin{align*} D_{k} & =\begin{pmatrix}\lambda_{k}\\ & \ddots\\ & & \lambda_{k} \end{pmatrix}, & M_{k} & :=\begin{pmatrix}a_{k} & -b_{k}\\ b_{k} & a_{k}\\ & & \ddots\\ & & & a_{k} & -b_{k}\\ & & & b_{k} & a_{k} \end{pmatrix}. \end{align*} \end_inset \begin_inset ERT status open \begin_layout Plain Layout } \end_layout \end_inset \end_layout \begin_layout Enumerate Sea \begin_inset Formula $P\coloneqq M_{{\cal CB}}$ \end_inset , entonces la parte semisimple es \begin_inset Formula $S\coloneqq PS_{0}P^{-1}$ \end_inset y la nilpotente es \begin_inset Formula $N\coloneqq A-S$ \end_inset . \end_layout \begin_layout Enumerate Finalmente, \begin_inset Formula \[ e^{At}=Pe^{S_{0}t}P^{-1}\sum_{k=1}^{n}\frac{N^{k}t^{k}}{k!}. \] \end_inset \end_layout \begin_layout Standard [...] Sea \begin_inset Formula $E$ \end_inset un \begin_inset Formula $\mathbb{R}$ \end_inset -espacio vectorial y \begin_inset Formula $T\in{\cal L}(E)$ \end_inset , existe una base de \begin_inset Formula $E$ \end_inset respecto a la que \begin_inset Formula $T$ \end_inset tiene una matriz compuesta de bloques diagonales de la forma \begin_inset ERT status open \begin_layout Plain Layout { \end_layout \end_inset \begin_inset Formula \begin{align*} \begin{pmatrix}\lambda\\ 1 & \ddots\\ & \ddots & \ddots\\ & & 1 & \lambda \end{pmatrix} & & \text{ó} & & \begin{pmatrix}\boxed{D} & \ddots\\ \boxed{I_{2}} & \ddots & \ddots\\ & & \boxed{I_{2}} & \boxed{D} \end{pmatrix}, & & D & =\begin{pmatrix}a & -b\\ b & a \end{pmatrix} \end{align*} \end_inset \begin_inset ERT status open \begin_layout Plain Layout } \end_layout \end_inset \end_layout \begin_layout Standard Si \begin_inset Formula $A$ \end_inset es [de la primera forma][...], [...] \begin_inset Formula \[ e^{tA}[...]=e^{t\lambda}\begin{pmatrix}1\\ t & 1\\ \frac{t^{2}}{2} & t & 1\\ \vdots & \ddots & \ddots & \ddots\\ \frac{t^{n-1}}{(n-1)!} & \cdots & \frac{t^{2}}{2} & t & 1 \end{pmatrix} \] \end_inset \end_layout \begin_layout Standard Si [es de la segunda][...], \begin_inset Formula \[ [e^{tA}]=e^{at}\begin{pmatrix}\tilde{D}\\ t\tilde{D} & \tilde{D}\\ \frac{t^{2}}{2}\tilde{D} & t\tilde{D} & \tilde{D}\\ \vdots & \ddots & \ddots & \ddots\\ \frac{t^{m-1}}{(m-1)!}\tilde{D} & \cdots & \frac{t^{2}}{2}\tilde{D} & t\tilde{D} & \tilde{D} \end{pmatrix} \] \end_inset [...] \begin_inset Formula \[ \tilde{D}=\begin{pmatrix}\cos(bt) & -\sin(bt)\\ \sin(bt) & \cos(bt) \end{pmatrix} \] \end_inset [...] Llamamos \series bold base de soluciones \series default de \begin_inset Formula $x^{(n)}+a_{1}(t)x^{(n-1)}+\dots+a_{1}(t)x=0$ \end_inset a una familia \begin_inset Formula $x_{1},\dots,x_{n}$ \end_inset de soluciones linealmente independiente. \end_layout \begin_layout Standard [...] Dada la ecuación homogénea \begin_inset Formula $x^{(n)}+a_{1}x^{(n-1)}+\dots+a_{n}x=0$ \end_inset , una combinación lineal de soluciones de esta ecuación es también solución, así como la derivada de una solución. \end_layout \begin_layout Standard La matriz de la ecuación vectorial asociada [con coeficientes \begin_inset Formula $(x,\dot{x},\dots,x^{(n-1)})$ \end_inset ] es \begin_inset Formula \[ \begin{pmatrix} & 1\\ & & \ddots\\ & & & 1\\ -a_{n} & \cdots & \cdots & -a_{1} \end{pmatrix}, \] \end_inset que llamamos \series bold asociada \series default al polinomio \begin_inset Formula $p(\lambda)=(-1)^{n}(\lambda^{n}+a_{1}\lambda^{n-1}+\dots+a_{n-1}\lambda+a_{n})$ \end_inset , [...] el polinomio característico de la matriz. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Section Superficies geodésicamente completas \end_layout \begin_layout Standard Una superficie regular \begin_inset Formula $S$ \end_inset es \series bold geodésicamente completa \series default en un \begin_inset Formula $p\in S$ \end_inset si para \begin_inset Formula $v\in T_{p}S$ \end_inset es \begin_inset Formula $I_{v}=\mathbb{R}$ \end_inset en \begin_inset Formula $p$ \end_inset , y es geodésicamente completa si lo es en todo \begin_inset Formula $p\in S$ \end_inset . \end_layout \begin_layout Enumerate Dado el plano \begin_inset Formula $S=\{p\in\mathbb{R}^{3}\mid \langle p,a\rangle=c\}$ \end_inset , la geodésica maximal de \begin_inset Formula $S$ \end_inset con condiciones iniciales \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $v\in T_{p}S$ \end_inset es la recta \begin_inset Formula $\gamma:\mathbb{R}\to S$ \end_inset dada por \begin_inset Formula $\gamma(t)\coloneqq p+tv$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Tomando la normal \begin_inset Formula $N(p)\coloneqq a$ \end_inset , como \begin_inset Formula $N$ \end_inset es constante, debe ser \begin_inset Formula \[ 0=\gamma''(t)+\langle\gamma'(t),(N\circ\gamma)'(t))\rangle N(\gamma(t))=\gamma''(t), \] \end_inset de modo que \begin_inset Formula $\gamma$ \end_inset es de la forma \begin_inset Formula $\gamma(t)=a+bt$ \end_inset , pero \begin_inset Formula $p=\gamma(0)=a$ \end_inset y \begin_inset Formula $v=\gamma'(0)=b$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Dado \begin_inset Formula $r>0$ \end_inset , la geodésica maximal de la esfera \begin_inset Formula $S\coloneqq \mathbb{S}^{2}(r)$ \end_inset con condiciones iniciales \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $v\in T_{p}S\setminus0$ \end_inset es el círculo máximo \begin_inset Formula $\gamma:\mathbb{R}\to S$ \end_inset dado por \begin_inset Formula \[ \gamma(t)=\cos\left(\frac{\Vert v\Vert}{r}t\right)p+\frac{r}{\Vert v\Vert}\sin\left(\frac{\Vert v\Vert}{r}t\right)v. \] \end_inset \end_layout \begin_deeper \begin_layout Standard Tomando la normal \begin_inset Formula $N(p)\coloneqq \frac{p}{r}$ \end_inset y llamando \begin_inset Formula $N(t)\coloneqq N(\gamma(t))$ \end_inset , \begin_inset Formula $N(t)=\frac{\gamma(t)}{r}$ \end_inset y \begin_inset Formula $N'(t)=\frac{1}{r}\gamma'(t)$ \end_inset , y debe ser \begin_inset Formula \[ 0=\gamma''(t)+\left\langle \gamma'(t),\frac{1}{r}\gamma'(t)\right\rangle \frac{1}{r}\gamma(t)=\gamma''(t)+\frac{1}{r^{2}}\Vert\gamma'(t)\Vert^{2}\gamma(t)\overset{\Vert\gamma'(t)\Vert=\Vert\gamma'(0)\Vert}{=}\gamma''(t)+\frac{\Vert v\Vert^{2}}{r^{2}}\gamma(t), \] \end_inset Si \begin_inset Formula $c\coloneqq \frac{\Vert v\Vert^{2}}{r^{2}}=0$ \end_inset , \begin_inset Formula $v=0$ \end_inset , y en otro caso, en cada coordenada, el polinomio asociado a la ecuación lineal homogénea \begin_inset Formula $p(\lambda)=\lambda^{2}+c$ \end_inset , los valores propios son \begin_inset Formula $\pm\sqrt{c}i$ \end_inset y una base de soluciones es pues \begin_inset Formula $\{\cos(\sqrt{c}t),\sin(\sqrt{c}t)\}$ \end_inset . Por tanto existen \begin_inset Formula $a_{i},b_{i}\in\mathbb{R}$ \end_inset con \begin_inset Formula $\gamma_{i}(t)=a_{i}\cos(\sqrt{c}t)+b_{i}\sin(\sqrt{c}t)$ \end_inset , pero \begin_inset Formula \begin{align*} p_{i} & =\gamma_{i}(0)=a_{i}, & v_{i} & =\gamma'_{i}(0)=b_{i}\sqrt{c}, \end{align*} \end_inset luego en resumen \begin_inset Formula $\gamma(t)=p\cos(\sqrt{c}t)+\frac{v}{\sqrt{C}}\sin(\sqrt{c}t)$ \end_inset , y \begin_inset Formula $\sqrt{c}=\frac{\Vert v\Vert}{r}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Sean \begin_inset Formula $r>0$ \end_inset , \begin_inset Formula $S\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$ \end_inset un cilindro, \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $v\in T_{p}S$ \end_inset , la geodésica maximal de \begin_inset Formula $S$ \end_inset con condiciones iniciales \begin_inset Formula $p$ \end_inset y \begin_inset Formula $v$ \end_inset es la recta \begin_inset Formula $\gamma:\mathbb{R}\to S$ \end_inset dada por \begin_inset Formula \[ \gamma(t):=p+tv \] \end_inset si \begin_inset Formula $v_{1}=v_{2}=0$ \end_inset o la hélice \begin_inset Formula $\gamma:\mathbb{R}\to S$ \end_inset dada por \begin_inset Formula \[ \gamma(t):=\begin{pmatrix}{\displaystyle p_{1}\cos(ct)+\tfrac{v_{1}}{c}\sin(ct)}\\ {\displaystyle p_{2}\cos(ct)+\tfrac{v_{2}}{c}\sin(ct)}\\ p_{3}+tv_{3} \end{pmatrix} \] \end_inset en otro caso, donde \begin_inset Formula $c\coloneqq \frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$ \end_inset , que es una circunferencia horizontal si \begin_inset Formula $v_{3}=0$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sea \begin_inset Formula $f(x,y,z)=x^{2}+y^{2}$ \end_inset , como \begin_inset Formula $f'(x,y,z)=(2x,2y,0)$ \end_inset , los puntos críticos de \begin_inset Formula $f$ \end_inset son aquellos con \begin_inset Formula $z=0$ \end_inset , el único valor crítico es 0 y \begin_inset Formula $r^{2}$ \end_inset es un valor regular, de modo que \begin_inset Formula $S=\{f(x,y,z)=r^{2}\}$ \end_inset es una superficie de nivel con normal \begin_inset Formula \[ N(x,y,z)=\frac{\nabla f}{\Vert\nabla f\Vert}=\frac{(2x,2y,0)}{2\sqrt{x^{2}+y^{2}}}=\frac{1}{r}(x,y,0). \] \end_inset Entonces, sean \begin_inset Formula $N(t)\coloneqq N(\gamma(t))$ \end_inset y \begin_inset Formula $\gamma(t)=:(x(t),y(t),z(t))$ \end_inset , \begin_inset Formula $N'(t)=\frac{1}{r}(x'(t),y'(t),0)$ \end_inset y \begin_inset Formula $\gamma$ \end_inset debe cumplir \begin_inset Formula \[ \gamma''(t)+\langle\gamma'(t),N'(t)\rangle N(t)=\begin{pmatrix}x''(t)\\ y''(t)\\ z''(t) \end{pmatrix}+\frac{1}{r^{2}}(x'(t)^{2}+y'(t)^{2})\begin{pmatrix}x'(t)\\ y'(t)\\ 0 \end{pmatrix}=0. \] \end_inset Así, \begin_inset Formula $z''(t)=0$ \end_inset y por tanto \begin_inset Formula $z(t)=a+bt$ \end_inset para ciertos \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset , con \begin_inset Formula $p_{3}=z(0)=a$ \end_inset y \begin_inset Formula $v_{3}=z'(0)=b$ \end_inset . Si \begin_inset Formula $v_{1}=v_{2}=0$ \end_inset entonces \begin_inset Formula $x$ \end_inset es constante en \begin_inset Formula $p_{1}$ \end_inset e \begin_inset Formula $y$ \end_inset lo es en \begin_inset Formula $p_{2}$ \end_inset . En otro caso \begin_inset Formula $c>0$ \end_inset , y como \begin_inset Formula $z'$ \end_inset es constante en \begin_inset Formula $v_{3}$ \end_inset y \begin_inset Formula $\Vert\gamma'\Vert$ \end_inset lo es en \begin_inset Formula $\Vert v\Vert$ \end_inset , se tiene \begin_inset Formula \[ x'(t)^{2}+y'(t)^{2}=\Vert\gamma'(t)\Vert^{2}-z'(t)^{2}=\Vert v\Vert^{2}-v_{3}^{2} \] \end_inset y \begin_inset Formula $\frac{x'(t)^{2}+y'(t)^{2}}{r^{2}}=c^{2}$ \end_inset , y queda \begin_inset Formula \[ (x''(t),y''(t))+c^{2}(x'(t),y'(t))=0. \] \end_inset Para la coordenada \begin_inset Formula $x$ \end_inset , el polinomio asociado es \begin_inset Formula $p(\lambda)=\lambda^{2}+c^{2}$ \end_inset y los valores propios son \begin_inset Formula $\pm ci$ \end_inset , de modo que una base de soluciones es \begin_inset Formula $\{\cos(ct),\sin(ct)\}$ \end_inset y existen \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset tales que \begin_inset Formula $x(t)=a\cos(ct)+b\sin(ct)$ \end_inset , pero \begin_inset Formula \begin{align*} p_{1} & =x(0)=a, & v_{1} & =x'(0)=bc, \end{align*} \end_inset de modo que \begin_inset Formula $x(t)=p_{1}\cos(ct)+\frac{v_{1}}{c}\sin(ct)$ \end_inset , y análogamente \begin_inset Formula $y(t)=p_{2}\cos(ct)+\frac{v_{2}}{c}\sin(ct)$ \end_inset . \end_layout \end_deeper \begin_layout Standard Así, el plano, la esfera y el cilindro son geodésicamente completos; de hecho toda superficie de nivel de una función \begin_inset Formula $f:\mathbb{R}^{3}\to\mathbb{R}$ \end_inset lo es. \end_layout \begin_layout Section Pregeodésicas \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash sremember{GCS} \end_layout \end_inset \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular orientada por \begin_inset Formula $N$ \end_inset y \begin_inset Formula $\alpha:I\to S$ \end_inset una curva, [...] \begin_inset Formula \[ \alpha''(t)=\frac{D\alpha'}{dt}(t)+\langle\alpha''(t),N(\alpha(t))\rangle N(\alpha(t)). \] \end_inset \end_layout \begin_layout Standard Sea \begin_inset Formula $\alpha:I\to S$ \end_inset una curva parametrizada por [...] arco, el \series bold triedro de Darboux \series default es la base [...] \begin_inset Formula $(\alpha'(s),J\alpha'(s)\coloneqq \alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ \end_inset . Entonces \begin_inset Formula \[ \frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s), \] \end_inset donde \begin_inset Formula $\kappa_{g}\coloneqq \langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ \end_inset , es la \series bold curvatura geodésica \series default de \begin_inset Formula $\alpha$ \end_inset , cuyo signo depende de \begin_inset Formula $N$ \end_inset [, y \begin_inset Formula $\kappa_{n}\coloneqq \langle\alpha'',N(\alpha)\rangle$ \end_inset es la \series bold curvatura normal \series default de \begin_inset Formula $\alpha$ \end_inset ]. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash eremember \end_layout \end_inset \end_layout \begin_layout Standard Una curva \begin_inset Formula $\alpha:I\to S$ \end_inset p.p.a. es una geodésica si y sólo si \begin_inset Formula $\kappa_{g}\equiv0$ \end_inset , pues \begin_inset Formula $\frac{D\alpha'}{ds}(s)=0$ \end_inset si y sólo si \begin_inset Formula $\kappa_{g}(s)J\alpha'(s)=0$ \end_inset , pero \begin_inset Formula $J\alpha'(s)\neq0$ \end_inset . \end_layout \begin_layout Standard Si \begin_inset Formula $S$ \end_inset es una superficie regular, \begin_inset Formula $\alpha:I\to S$ \end_inset es una curva y \begin_inset Formula $h:J\to I$ \end_inset es un cambio de parámetro que conserva la orientación con \begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset p.p.a., la curvatura geodésica de \begin_inset Formula $\alpha$ \end_inset es \begin_inset Formula \[ \kappa_{g}^{\alpha}(t):=\kappa_{g}^{\beta}(h^{-1}(t))=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{\Vert\alpha'(t)\Vert^{3}}. \] \end_inset \series bold Demostración: \series default \begin_inset Formula $1=\Vert\beta'(s)\Vert=h'(s)\Vert\alpha'(h(s))\Vert$ \end_inset , luego \begin_inset Formula $h'(s)=\frac{1}{\Vert\alpha'(h(s))\Vert}$ \end_inset y para \begin_inset Formula $t\in I$ \end_inset , sea \begin_inset Formula $s\coloneqq h^{-1}(t)$ \end_inset , \begin_inset Formula \begin{align*} \kappa_{g}^{\alpha}(t) & =\kappa_{g}^{\beta}(s)=\langle\beta''(s),J\beta'(s)\rangle=\langle h''(s)\alpha'(h(s))+h'(s)^{2}\alpha''(h(s)),h'(s)J\alpha'(h(s))\rangle\\ & =h'(s)^{3}\langle\alpha''(h(s)),J\alpha'(h(s))\rangle=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{\Vert\alpha'(t)\Vert^{3}}, \end{align*} \end_inset donde en la penúltima igualdad se usa que \begin_inset Formula $\langle\alpha'(h(s)),J\alpha'(h(s))\rangle=0$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{samepage} \end_layout \end_inset \end_layout \begin_layout Standard Una curva \begin_inset Formula $\alpha:I\to S$ \end_inset es una \series bold pregeodésica \series default de \begin_inset Formula $S$ \end_inset si existe un cambio de parámetro \begin_inset Formula $h:J\to I$ \end_inset tal que \begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es una geodésica de \begin_inset Formula $S$ \end_inset , si y sólo si \begin_inset Formula $\kappa_{g}^{\alpha}\equiv0$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Sea \begin_inset Formula $h$ \end_inset un cambio de parámetro tal que \begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es una geodésica, entonces \begin_inset Formula $\Vert\beta'\Vert$ \end_inset es constante en algún \begin_inset Formula $c>0$ \end_inset , luego \begin_inset Formula $\gamma(s)\coloneqq \beta(\frac{s}{c})$ \end_inset es una geodésica y es p.p.a. al ser \begin_inset Formula $\Vert\gamma'(s)\Vert=\Vert\frac{1}{c}\beta'(s)\Vert=1$ \end_inset . Sea entonces \begin_inset Formula $\tilde{h}(s)\coloneqq h(\frac{s}{c})$ \end_inset , entonces \begin_inset Formula $\gamma=\alpha\circ\tilde{h}$ \end_inset y \begin_inset Formula $\kappa_{g}^{\alpha}(t)=\kappa_{g}^{\gamma}(\tilde{h}^{-1}(t))=0$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Sea \begin_inset Formula $\beta=\alpha\circ h$ \end_inset la reparametrización por arco de \begin_inset Formula $\alpha$ \end_inset , como \begin_inset Formula $\kappa_{g}^{\alpha}(t)=\kappa_{g}^{\beta}(h^{-1}(t))$ \end_inset , \begin_inset Formula $\kappa_{g}^{\beta}(s)=\kappa_{g}^{\alpha}(h(s))=0$ \end_inset , luego \begin_inset Formula $\beta$ \end_inset es una geodésica y por tanto \begin_inset Formula $\alpha$ \end_inset es una pregeodésica. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash end{samepage} \end_layout \end_inset \end_layout \end_body \end_document