#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular y \begin_inset Formula $p\in S$ \end_inset , la \series bold aplicación exponencial \series default en \begin_inset Formula $p$ \end_inset es \begin_inset Formula $\exp_{p}:{\cal D}_{p}\to S$ \end_inset dada por \begin_inset Formula \[ \exp_{p}(v)=\gamma_{v}(1), \] \end_inset donde \begin_inset Formula ${\cal D}_{p}\coloneqq \{v\in T_{p}S\mid 1\in I_{v}\}$ \end_inset . Propiedades: \end_layout \begin_layout Enumerate \begin_inset Formula $0\in{\cal D}_{p}$ \end_inset y \begin_inset Formula $\exp_{p}(0)=p$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\forall v\in T_{p}S,t\in I_{v},(tv\in{\cal D}_{p}\land\exp_{p}(tv)=\gamma_{v}(t))$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $t=0$ \end_inset , \begin_inset Formula $\exp_{p}(0)=\gamma_{v}(0)=p$ \end_inset , y si \begin_inset Formula $v=0$ \end_inset , \begin_inset Formula $\exp_{p}(0)=\gamma_{0}(t)=p$ \end_inset . Si \begin_inset Formula $t,v\neq0$ \end_inset , \begin_inset Formula $1=\frac{1}{t}t\in\frac{1}{t}I_{v}=I_{tv}$ \end_inset , luego \begin_inset Formula $tv\in{\cal D}_{p}$ \end_inset y \begin_inset Formula $\exp_{p}(tv)=\gamma_{tv}(1)=\gamma_{v}(t)$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula ${\cal D}_{p}$ \end_inset es estrellado respecto a 0. \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $v\in{\cal D}_{p}$ \end_inset y \begin_inset Formula $t\in[0,1]$ \end_inset , como \begin_inset Formula $1\in I_{v}$ \end_inset , \begin_inset Formula $t\in[0,1]\subseteq I_{v}$ \end_inset y por tanto \begin_inset Formula $tv\in{\cal D}_{p}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\forall v\in T_{p}S,\exists\lambda>0:\lambda v\in{\cal D}_{p}$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Existe \begin_inset Formula $\varepsilon>0$ \end_inset con \begin_inset Formula $(-\varepsilon,\varepsilon)\subseteq I_{v}$ \end_inset , y tomando \begin_inset Formula $|\lambda|<\varepsilon$ \end_inset es \begin_inset Formula $\lambda\in I_{v}$ \end_inset y \begin_inset Formula $\lambda v\in{\cal D}_{p}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula ${\cal D}_{p}$ \end_inset es abierto y \begin_inset Formula $\exp_{p}$ \end_inset es diferenciable. \end_layout \begin_layout Enumerate \begin_inset Formula $d(\exp_{p})_{0}=1_{T_{p}S}$ \end_inset , y en particular \begin_inset Formula $\exp_{p}$ \end_inset es un difeomorfismo local en 0. \end_layout \begin_deeper \begin_layout Standard Como \begin_inset Formula ${\cal D}_{p}\subseteq T_{p}S$ \end_inset y el plano tangente a un plano es él mismo, \begin_inset Formula $T_{0}{\cal D}_{p}=T_{0}(T_{p}S)=T_{p}S$ \end_inset . Entonces, para \begin_inset Formula $w\in T_{p}S$ \end_inset , sea \begin_inset Formula $\alpha(t)\coloneqq tw$ \end_inset , existe \begin_inset Formula $\varepsilon>0$ \end_inset tal que \begin_inset Formula $\alpha((-\varepsilon,\varepsilon))\subseteq{\cal D}_{p}$ \end_inset , de modo que \begin_inset Formula $d(\exp_{p})_{0}:(T_{0}{\cal D}_{p}=T_{p}S)\to(T_{\exp_{p(0)}}S=T_{p}S)$ \end_inset viene dada por \begin_inset Formula \[ d(\exp_{p})_{0}(w)=\frac{d}{dt}(\exp_{p}(\alpha(t)))(0)=\frac{d}{dt}(\exp_{p}(tw))(0)=\frac{d}{dt}(\gamma_{w}(t))(0)=\gamma'_{w}(0)=w. \] \end_inset \end_layout \end_deeper \begin_layout Standard Un entorno \begin_inset Formula $V$ \end_inset de \begin_inset Formula $p_{0}\in S$ \end_inset es \series bold estrellado \series default respecto a \begin_inset Formula $p_{0}$ \end_inset si para \begin_inset Formula $p\in V$ \end_inset existe un segmento de geodésica que une \begin_inset Formula $p_{0}$ \end_inset con \begin_inset Formula $p$ \end_inset . \end_layout \begin_layout Standard Un \series bold entorno normal \series default de \begin_inset Formula $p_{0}\in S$ \end_inset es un entorno \begin_inset Formula $V$ \end_inset de \begin_inset Formula $p_{0}$ \end_inset en \begin_inset Formula $S$ \end_inset para el que existe un entorno \begin_inset Formula ${\cal U}$ \end_inset del 0 en \begin_inset Formula $T_{p_{0}}S$ \end_inset estrellado respecto al 0 tal que \begin_inset Formula $\exp_{p_{0}}|_{{\cal U}}:{\cal U}\to V$ \end_inset es un difeomorfismo. En estas condiciones, para \begin_inset Formula $p\in V$ \end_inset , sean \begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)\in{\cal U}$ \end_inset y el segmento de geodésica \begin_inset Formula $\gamma_{p}\coloneqq \gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$ \end_inset , entonces \begin_inset Formula $\gamma_{p}(t)=\exp_{p_{0}}(tv_{p})$ \end_inset para \begin_inset Formula $t\in[0,1]$ \end_inset , \begin_inset Formula $\gamma_{p}(0)=p_{0}$ \end_inset y \begin_inset Formula $\gamma_{p}(1)=p$ \end_inset , por lo que \begin_inset Formula $\gamma_{p}$ \end_inset es el \series bold segmento de geodésica radial \series default que une \begin_inset Formula $p_{0}$ \end_inset con \begin_inset Formula $p$ \end_inset . Así, todo entorno normal de \begin_inset Formula $p_{0}$ \end_inset es estrellado respecto a \begin_inset Formula $p_{0}$ \end_inset . \end_layout \begin_layout Section Lema de Gauss \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular, \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $v\in{\cal D}_{p}\setminus0$ \end_inset y \begin_inset Formula $w\in T_{p}S$ \end_inset , entonces \begin_inset Formula \[ \langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle=\langle v,w\rangle. \] \end_inset \end_layout \begin_layout Standard \series bold Demostración: \series default Supongamos que \begin_inset Formula $v$ \end_inset y \begin_inset Formula $w$ \end_inset son colineales y sea \begin_inset Formula $\lambda\in\mathbb{R}$ \end_inset tal que \begin_inset Formula $w=\lambda v$ \end_inset . Sea \begin_inset Formula $\alpha:(-\varepsilon,\varepsilon)\to{\cal D}_{p}$ \end_inset dada por \begin_inset Formula $\alpha(t)\coloneqq v+tw=(1+\lambda t)v$ \end_inset , entonces \begin_inset Formula \[ d(\exp_{p})_{v}(w)=\frac{d}{dt}(\exp_{p}(\alpha(t)))(0)=\frac{d}{dt}(\exp_{p}((1+\lambda t)v))(0)=\frac{d}{dt}(\gamma_{v}(1+\lambda t))=\lambda\gamma'_{v}(1+\lambda t), \] \end_inset luego \begin_inset Formula $\Vert d(\exp_{p})_{v}(w)\Vert=\Vert\lambda\gamma'_{v}(1)\Vert=|\lambda|\Vert\gamma'_{v}(1)\Vert=|\lambda|\Vert v\Vert=\Vert w\Vert$ \end_inset . \end_layout \begin_layout Standard Para el caso general, sea \begin_inset Formula $\tau:\mathbb{R}\times\mathbb{R}\to T_{p}S$ \end_inset dada por \begin_inset Formula $\tau(s,t)\coloneqq s\alpha(t)\coloneqq s(v+tw)$ \end_inset , para todo \begin_inset Formula $t$ \end_inset es \begin_inset Formula $\tau(0,t)=0$ \end_inset y \begin_inset Formula $\tau(1,t)=v+tw$ \end_inset , y como \begin_inset Formula $\tau$ \end_inset es lineal sobre la primera variable, si \begin_inset Formula $\tau(1,t)\in{\cal D}_{p}$ \end_inset , \begin_inset Formula $\tau([0,1]\times\{t\})=[\tau(0,t),\tau(1,t)]=[0,v+tw]\in{\cal D}_{p}$ \end_inset . \end_layout \begin_layout Standard Como \begin_inset Formula $\tau(1,0)=v\in{\cal D}_{p}$ \end_inset , se tiene \begin_inset Formula $\tau([0,1]\times\{0\})\subseteq{\cal D}_{p}$ \end_inset . Para cada \begin_inset Formula $s\in[0,1]$ \end_inset existe un entorno de \begin_inset Formula $\tau(s,0)$ \end_inset contenido en \begin_inset Formula ${\cal D}_{p}$ \end_inset y, por ser \begin_inset Formula $\tau$ \end_inset continua, existe un \begin_inset Formula $\varepsilon_{s}>0$ \end_inset con \begin_inset Formula $\tau(B_{\infty}((s,0),\varepsilon_{s}))\subseteq{\cal D}_{p}$ \end_inset . Ahora bien, \begin_inset Formula $\{B_{\infty}((s,0),\varepsilon_{s})\}_{s\in[0,1]}$ \end_inset es un cubrimiento por abiertos de \begin_inset Formula $[0,1]\times\{0\}$ \end_inset que admite pues un subrecubrimiento finito \begin_inset Formula $\{B_{\infty}((s_{i},0),\varepsilon_{s_{i}})\}_{i=1}^{k}$ \end_inset . Proyectando el subrecubrimiento \begin_inset Formula $A\coloneqq \bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$ \end_inset en \begin_inset Formula $\mathbb{R}\times0$ \end_inset queda un abierto que contiene a \begin_inset Formula $[0,1]$ \end_inset y por tanto contiene un intervalo \begin_inset Formula $(-\varepsilon',1+\varepsilon')$ \end_inset . Sea \begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$ \end_inset , para \begin_inset Formula $s\in(-\varepsilon',1+\varepsilon')$ \end_inset se tiene \begin_inset Formula \[ (\max\{s-\varepsilon,-\varepsilon'\},\min\{s+\varepsilon,1+\varepsilon'\})\times(-\varepsilon,\varepsilon)\subseteq A, \] \end_inset luego \begin_inset Formula $\tau((-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon))\subseteq{\cal D}_{p}$ \end_inset . \end_layout \begin_layout Standard Sea ahora \begin_inset Formula $\varphi\coloneqq \exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$ \end_inset . Se tiene \begin_inset Formula \begin{align*} \frac{\partial\varphi}{\partial s}(s,t) & =\frac{\partial}{\partial s}(\exp_{p}(s\alpha(t)))(s,t)=\frac{\partial}{\partial s}(\gamma_{\alpha(t)}(s))(s,t)=\gamma'_{\alpha(t)}(s)\\ & =\frac{d}{ds}(\exp_{p}(s\alpha(t)))(s,t)=d(\exp_{p})_{s\alpha(t)}(\alpha(t)), \end{align*} \end_inset donde la última igualdad es por la regla de la cadena, luego \begin_inset Formula \[ \left\Vert \frac{\partial\varphi}{\partial s}(s,t)\right\Vert ^{2}=\Vert\gamma'_{\alpha(t)}(s)\Vert^{2}=\Vert\gamma'_{\alpha(t)}(0)\Vert^{2}=\Vert\alpha(t)\Vert^{2}=\Vert v\Vert^{2}+2t\langle v,w\rangle+t^{2}\Vert w\Vert^{2}, \] \end_inset y por otro lado \begin_inset Formula \begin{align*} \frac{\partial\varphi}{\partial s}(s,0) & =d(\exp_{p})_{sv}(v), & \frac{\partial\varphi}{\partial s}(0,0) & =d(\exp_{p})_{0}(v)=v, & \frac{\partial\varphi}{\partial s}(1,0) & =d(\exp_{p})_{v}(v). \end{align*} \end_inset \end_layout \begin_layout Standard Por otra parte, \begin_inset Formula \begin{align*} \frac{\partial\varphi}{\partial t}(0,t) & =\frac{\partial}{\partial t}(\exp_{p}(0))=0, & \frac{\partial}{\partial t}(1,t) & =\frac{\partial}{\partial t}(\exp_{p}(v+tw))=d(\exp_{p})_{v+tw}(w), \end{align*} \end_inset de modo que \begin_inset Formula $\frac{\partial\varphi}{\partial t}(1,0)=d(\exp_{p})_{v}(w)$ \end_inset . Sea \begin_inset Formula $f:(-\varepsilon,1+\varepsilon)\to\mathbb{R}$ \end_inset dada por \begin_inset Formula \[ f(s):=\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial\varphi}{\partial t}(s,0)\right\rangle , \] \end_inset de modo que en particular \begin_inset Formula $f(0)=\langle v,0\rangle=0$ \end_inset , \begin_inset Formula $f(1)=\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle$ \end_inset y queremos ver que \begin_inset Formula $f(1)=\langle v,w\rangle$ \end_inset . Como \begin_inset Formula $\frac{\partial\varphi}{\partial s}(s,t)=\gamma'_{\alpha(t)}(s)$ \end_inset , \begin_inset Formula \begin{align*} \frac{\partial^{2}\varphi}{\partial s^{2}}(s,t) & =\gamma''_{\alpha(t)}(s), & \frac{\partial^{2}\varphi}{\partial s^{2}}(s,0) & =\gamma''_{\alpha(0)}(s)=\gamma''_{v}(s)\in T_{\gamma_{v}(s)}S^{\bot}, \end{align*} \end_inset pues \begin_inset Formula $\gamma_{v}$ \end_inset es una geodésica y \begin_inset Formula $\frac{D\gamma'_{v}}{ds}=0$ \end_inset . Por otro lado, para \begin_inset Formula $s\in(-\varepsilon,1+\varepsilon)$ \end_inset , sea \begin_inset Formula $\beta_{s}(t):(-\varepsilon,\varepsilon)\to S$ \end_inset dada por \begin_inset Formula $\beta_{s}(t)\coloneqq \exp_{p}(s\alpha(t))$ \end_inset , \begin_inset Formula $\beta_{s}$ \end_inset es una curva porque \begin_inset Formula $\exp_{p}$ \end_inset es un difeomorfismo y \begin_inset Formula $\alpha(t)=v+tw\neq0$ \end_inset para ningún \begin_inset Formula $t$ \end_inset (si lo fuera, \begin_inset Formula $v$ \end_inset y \begin_inset Formula $w$ \end_inset serían colineales), de modo que, como \begin_inset Formula $\beta_{s}(0)=\exp_{p}(sv)=\gamma_{v}(s)$ \end_inset , \begin_inset Formula \[ \frac{\partial\varphi}{\partial t}(s,0)=\frac{\partial}{\partial t}(\exp_{p}(s\alpha(t)))(s,0)=\beta'_{s}(0)\in T_{\beta_{s}(0)}S=T_{\gamma_{v}(s)}S, \] \end_inset y entonces \begin_inset Formula \begin{align*} f'(s) & =\left\langle \frac{\partial^{2}\varphi}{\partial s^{2}}(s,0),\frac{\partial\varphi}{\partial t}(s,0)\right\rangle +\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial^{2}\varphi}{\partial t\partial s}(s,0)\right\rangle =\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial^{2}\varphi}{\partial s\partial t}(s,0)\right\rangle \\ & =\frac{1}{2}\frac{\partial}{\partial t}\left(\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial\varphi}{\partial s}(s,0)\right\rangle \right)(0)=\frac{1}{2}\frac{\partial}{\partial t}\left(\left\Vert \frac{\partial\varphi}{\partial s}(s,0)\right\Vert ^{2}\right)(0)\\ & =\frac{1}{2}\frac{\partial}{\partial t}(\Vert v\Vert^{2}+2t\langle v,w\rangle+t^{2}\Vert w\Vert^{2})(0)=\frac{1}{2}(t\mapsto2\langle v,w\rangle+2t\Vert w\Vert^{2})(0)=\frac{1}{2}2\langle v,w\rangle=\langle v,w\rangle. \end{align*} \end_inset Por tanto, \begin_inset Formula \[ f(1)=f(0)+\int_{0}^{1}f'(s)ds=\left[s\langle v,w\rangle\right]_{s=0}^{1}=\langle v,w\rangle. \] \end_inset \end_layout \begin_layout Section Propiedad minimizante de las geodésicas \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular, \begin_inset Formula $p\in S$ \end_inset , \begin_inset Formula $v\in{\cal D}_{p}\setminus0$ \end_inset y \begin_inset Formula $w\in T_{p}S$ \end_inset : \end_layout \begin_layout Enumerate Si \begin_inset Formula $v$ \end_inset y \begin_inset Formula $w$ \end_inset son colineales, \begin_inset Formula $\Vert d(\exp_{p})_{v}(w)\Vert=\Vert w\Vert$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Si \begin_inset Formula $w=0$ \end_inset esto es obvio. Sea \begin_inset Formula $\lambda\neq0$ \end_inset con \begin_inset Formula $w=\lambda v$ \end_inset , se tiene \begin_inset Formula $v=\frac{1}{\lambda}w$ \end_inset y, por el lema de Gauss, \begin_inset Formula \begin{align*} \langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle & =\langle\tfrac{1}{\lambda}d(\exp_{p})_{v}(w),d(\exp_{p})_{v}(w)\rangle=\tfrac{1}{\lambda}\Vert d(\exp_{p})_{v}(w)\Vert^{2}\\ & =\langle v,w\rangle=\langle\tfrac{1}{\lambda}w,w\rangle=\tfrac{1}{\lambda}\Vert w\Vert^{2}, \end{align*} \end_inset y despejando se obtiene el resultado. \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $v$ \end_inset y \begin_inset Formula $w$ \end_inset son ortogonales, entonces \begin_inset Formula $d(\exp_{p})_{v}(v)$ \end_inset y \begin_inset Formula $d(\exp_{p})_{v}(w)$ \end_inset también. \end_layout \begin_deeper \begin_layout Standard Por el lema de Gauss, \begin_inset Formula $\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle=\langle v,w\rangle=0$ \end_inset . \end_layout \end_deeper \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular, \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $r>0$ \end_inset tal que \begin_inset Formula ${\cal D}(0,r)\coloneqq \{v\in T_{p}S\mid \Vert v\Vert0$ \end_inset con \begin_inset Formula $p\in D(p_{0},r)\subseteq V$ \end_inset , entonces \begin_inset Formula $\gamma_{p}$ \end_inset es una curva de menor longitud que une \begin_inset Formula $p_{0}$ \end_inset a \begin_inset Formula $p$ \end_inset . \end_layout \begin_layout Standard \series bold Demostración: \series default Sea \begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)$ \end_inset , entonces \begin_inset Formula \[ L(\gamma_{p})=\int_{0}^{1}\Vert\gamma_{p}'(t)\Vert dt=\int_{0}^{1}\Vert\gamma_{p}'(0)\Vert dt=\Vert\gamma_{p}'(0)\Vert=\Vert v_{p}\Vert. \] \end_inset Sea \begin_inset Formula $\alpha:[a,b]\to V$ \end_inset otra curva que une \begin_inset Formula $p_{0}$ \end_inset a \begin_inset Formula $p$ \end_inset , y queremos ver que \begin_inset Formula $L(\alpha)\geq L(\gamma_{p})$ \end_inset y que la igualdad solo la alcanzan las reparametrizaciones. \end_layout \begin_layout Standard Sean \begin_inset Formula $A\coloneqq \alpha^{-1}(\{p_{0}\})$ \end_inset y \begin_inset Formula $t_{0}\coloneqq \sup A$ \end_inset , existe una sucesión \begin_inset Formula $\{t_{n}\}_{n}\subseteq A$ \end_inset que converge a \begin_inset Formula $t_{0}$ \end_inset y por tanto \begin_inset Formula $\alpha(t_{0})=\alpha(\lim_{n}t_{n})=\lim_{n}\alpha(t_{n})=p_{0}$ \end_inset y \begin_inset Formula $t_{0}\in A$ \end_inset , luego \begin_inset Formula $t_{0}=\max\{t\in[a,b]\mid \alpha(t)=p_{0}\}0,\tilde{\alpha}(t)\neq0$ \end_inset . Sean entonces \begin_inset Formula $r(t)\coloneqq \Vert\tilde{\alpha}(t)\Vert$ \end_inset y, para \begin_inset Formula $t>0$ \end_inset , \begin_inset Formula $V(t)\coloneqq \frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$ \end_inset , de modo que \begin_inset Formula $\alpha(T)=\exp_{p_{0}}(r(t)V(t))$ \end_inset para \begin_inset Formula $t>0$ \end_inset y \begin_inset Formula \begin{align*} \alpha'(t) & =\frac{d}{dt}\left(\exp_{p_{0}}(\tilde{\alpha}(t))\right)(0)=d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(\tilde{\alpha}'(t))=d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(r'(t)V(t)+r(t)V'(t))\\ & =r'(t)d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))+r(t)d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t)). \end{align*} \end_inset Entonces \begin_inset Formula \begin{align*} \Vert\alpha'(t)\Vert^{2}= & r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}\\ & +2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}. \end{align*} \end_inset Como \begin_inset Formula $V(t)$ \end_inset es colineal con \begin_inset Formula $\tilde{\alpha}(t)=r(t)V(t)$ \end_inset , \begin_inset Formula $\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert=\Vert V(t)\Vert=1$ \end_inset , luego \begin_inset Formula \[ \langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0 \] \end_inset y \begin_inset Formula \begin{multline*} \langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle=\\ =\frac{1}{r(t)}\langle d(\exp_{p_{0}})_{r(t)V(t)}(r(t)V(t)),d(\exp_{p_{0}})_{r(t)V(t)}(V'(t))\rangle=0. \end{multline*} \end_inset Así, \begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}\geq r'(t)^{2}$ \end_inset , luego \begin_inset Formula $\Vert\alpha'(t)\Vert\geq|r'(t)|$ \end_inset para todo \begin_inset Formula $t\in(0,1]$ \end_inset y, para \begin_inset Formula $\varepsilon\in(0,1]$ \end_inset , \begin_inset Formula \[ \int_{\varepsilon}^{1}\Vert\alpha'(t)\Vert dt\geq\int_{\varepsilon}^{1}r'(t)dt=r(1)-r(\varepsilon)=\Vert v_{p}\Vert-r(\varepsilon)=\Vert L(\gamma_{p})\Vert-r(\varepsilon), \] \end_inset y por continuidad de \begin_inset Formula $r$ \end_inset , \begin_inset Formula \[ L(\alpha)=\int_{0}^{1}\Vert\alpha'(t)\Vert dt\geq\lim_{\varepsilon\to0}(\Vert L(\gamma_{p})\Vert-r(\varepsilon))=\Vert L(\gamma_{p})\Vert. \] \end_inset \end_layout \begin_layout Standard Si \begin_inset Formula $L(\alpha)=L(\gamma_{p})$ \end_inset , como \begin_inset Formula \[ L(\alpha)=\int_{0}^{1}\Vert\alpha'(t)\Vert dt=\int_{0}^{1}r'(t)dt=\Vert v_{p}\Vert \] \end_inset y \begin_inset Formula $\Vert\alpha'(t)\Vert\geq r'(t)$ \end_inset para todo \begin_inset Formula $t\in(0,1]$ \end_inset , por monotonía de la integral es \begin_inset Formula $\Vert\alpha'(t)\Vert=r'(t)$ \end_inset para todo \begin_inset Formula $t\in(0,1]$ \end_inset , pero entonces \begin_inset Formula $r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}}(V'(t))\Vert^{2}=0$ \end_inset y, por tanto, \begin_inset Formula $d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))=0$ \end_inset , pero \begin_inset Formula $\exp_{p_{0}}|_{{\cal U}}$ \end_inset es un difeomorfismo, luego \begin_inset Formula $d(\exp_{p_{0}})_{\tilde{\alpha}(t)}$ \end_inset es inyectiva y \begin_inset Formula $V'(t)=0$ \end_inset . Así, para \begin_inset Formula $t>0$ \end_inset , \begin_inset Formula $V(t)=V(1)=\frac{v_{p}}{\Vert v_{p}\Vert}$ \end_inset , luego \begin_inset Formula \[ \alpha(t)=\exp_{p_{0}}\left(r(t)\frac{v_{p}}{\Vert v_{p}\Vert}\right)=\gamma_{v_{p}}\left(\frac{r(t)}{\Vert v_{p}\Vert}\right)=\gamma_{p}\left(\frac{r(t)}{\Vert v_{p}\Vert}\right), \] \end_inset y además \begin_inset Formula $\alpha(0)=p_{0}=\gamma_{p}(0)=\gamma_{p}(\frac{r(t)}{\Vert v_{p}\Vert})$ \end_inset , luego \begin_inset Formula $\alpha$ \end_inset es una reparametrización de \begin_inset Formula $\gamma_{p}$ \end_inset . \end_layout \begin_layout Standard Finalmente, sea \begin_inset Formula $r$ \end_inset tal que \begin_inset Formula $p\in D(p_{0},r)\subseteq V$ \end_inset , de modo que \begin_inset Formula $\exp_{p_{0}}:{\cal D}(0,r)\subseteq{\cal U}\to D(p_{0},r)\subseteq V$ \end_inset es un difeomorfismo y \begin_inset Formula $\Vert v_{p}\Vertr^{*}$ \end_inset , por continuidad de \begin_inset Formula $\Vert\tilde{\alpha}\Vert$ \end_inset es \begin_inset Formula \[ A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset. \] \end_inset Entonces, como \begin_inset Formula $\{r^{*}\}$ \end_inset es compacto, \begin_inset Formula $A$ \end_inset también lo es y existe \begin_inset Formula $t^{*}\coloneqq \min A$ \end_inset , y llamando \begin_inset Formula $p^{*}\coloneqq \alpha(t^{*})\in S(p_{0},r^{*})$ \end_inset , \begin_inset Formula \[ L(\gamma_{p})=\Vert v_{p}\Vert0$ \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $G(r,\theta)=\Vert X_{\theta}(r,\theta)\Vert^{2}=\Vert rd(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}=r^{2}\Vert d(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}$ \end_inset , que es positivo porque \begin_inset Formula $r>0$ \end_inset , \begin_inset Formula $v'_{\theta}\neq0$ \end_inset y \begin_inset Formula $d(\exp_{p_{0}})_{rv_{\theta}}$ \end_inset es un isomorfismo al ser \begin_inset Formula $\exp_{p_{0}}$ \end_inset un difeomorfismo en \begin_inset Formula ${\cal U}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\lim_{r\to0}G(r,\theta)=0$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Para un \begin_inset Formula $\theta$ \end_inset fijo, \begin_inset Formula \[ \lim_{r\to0}G(r,\theta)=\lim_{r\to0}r^{2}\Vert d(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}=0^{2}\cdot\Vert d(\exp_{p_{0}})_{0}(v'_{\theta})\Vert^{2}=0. \] \end_inset \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\lim_{r\to0}\frac{\partial}{\partial r}(\sqrt{G(r)})(r,\theta)=1$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Sean \begin_inset Formula $\overline{X}(u,v)\coloneqq \exp_{p_{0}}(ue_{1}+ve_{2})$ \end_inset la parametrización normal centrada en \begin_inset Formula $p_{0}$ \end_inset a partir de \begin_inset Formula $V$ \end_inset y \begin_inset Formula $\overline{E},\overline{F},\overline{G}$ \end_inset los parámetros de su primera forma fundamental, como \begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta})\coloneqq \overline{X}(r\cos\theta,r\sin\theta)$ \end_inset , se tiene \begin_inset Formula \begin{align*} X_{r}(r,\theta) & =\overline{X}_{u}(r_{\theta})\cos\theta+\overline{X}_{v}(r_{\theta})\sin\theta, & X_{\theta}(r,\theta) & =-\overline{X}_{u}(r_{\theta})r\sin\theta+\overline{X}_{v}(r_{\theta})r\cos\theta, \end{align*} \end_inset pero \begin_inset Formula $\Vert X_{r}\wedge X_{\theta}\Vert=\sqrt{EG-F^{2}}\stackrel[F=0]{E=1}{=}\sqrt{G}$ \end_inset y \begin_inset Formula $\Vert\overline{X}_{u}\wedge\overline{X}_{v}\Vert=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}$ \end_inset , y como \begin_inset Formula \[ X_{r}\wedge X_{\theta}=r\cos^{2}\theta\overline{X}_{u}\wedge\overline{X}_{v}-r\sin^{2}\theta\overline{X}_{v}\wedge\overline{X}_{u}=r\overline{X}_{u}\wedge\overline{X}_{v}, \] \end_inset queda \begin_inset Formula $\sqrt{G}(r,\theta)=\Vert X_{r}\wedge X_{\theta}\Vert=r\Vert\overline{X}_{u}\wedge\overline{X}_{v}\Vert=r\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r\cos\theta,r\sin\theta)$ \end_inset . Entonces \begin_inset Formula \[ \frac{\partial}{\partial r}\sqrt{G}=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})+r\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right), \] \end_inset pero \begin_inset Formula \begin{multline*} \lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\\ =\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R}, \end{multline*} \end_inset pues \begin_inset Formula $\lim_{r\to0}\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(0,0)=1$ \end_inset y la parte superior del cociente es continua y está definida para \begin_inset Formula $r=0$ \end_inset . Así, \begin_inset Formula \[ \lim_{r\to0}\frac{\partial}{\partial r}\sqrt{G}=\lim_{r\to0}\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})+\lim_{r\to0}r\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=1+0=0. \] \end_inset \end_layout \end_deeper \begin_layout Enumerate La curvatura de Gauss, \begin_inset Formula $K$ \end_inset , satisface \begin_inset Formula \[ \sqrt{G(r,\theta)}K(X(r,\theta))+\frac{\partial^{2}}{\partial r^{2}}(\sqrt{G(r,\theta)})=0. \] \end_inset \end_layout \begin_deeper \begin_layout Standard Como \begin_inset Formula $F=0$ \end_inset , \begin_inset Formula \[ K=\frac{-1}{2\sqrt{EG}}\left[\left(\frac{E_{\theta}}{\sqrt{EG}}\right)_{\theta}+\left(\frac{G_{r}}{\sqrt{EG}}\right)_{r}\right]\overset{E_{\theta}\equiv0}{=}-\frac{1}{2\sqrt{G}}\left(\frac{G_{r}}{\sqrt{G}}\right)_{r}=-\frac{1}{\sqrt{G}}(\sqrt{G})_{rr}, \] \end_inset pues \begin_inset Formula $(\sqrt{G})_{r}=\frac{1}{2}\frac{G_{r}}{\sqrt{G}}$ \end_inset , y multiplicando por \begin_inset Formula $\sqrt{G}$ \end_inset y despejando, \begin_inset Formula $\sqrt{G}K+(\sqrt{G})_{rr}=0$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $K$ \end_inset es constante, \begin_inset Formula \[ G(r,\theta)=\begin{cases} r^{2}, & K=0;\\ \frac{1}{K}\sin^{2}(\sqrt{K}r), & K>0;\\ -\frac{1}{K}\sinh^{2}(\sqrt{-K}r), & K<0. \end{cases} \] \end_inset \end_layout \begin_deeper \begin_layout Standard Fijado \begin_inset Formula $\theta$ \end_inset , sea \begin_inset Formula $u(r)\coloneqq \sqrt{G(r,\theta)}$ \end_inset , de modo que \begin_inset Formula $G(r,\theta)=u(r)^{2}$ \end_inset . Se tiene \begin_inset Formula \[ \left\{ \begin{aligned}u(r)K+\ddot{u} & =0,\\ \lim_{r\to0}u(r) & =0,\\ \lim_{r\to0}\dot{u}(r) & =1, \end{aligned} \right. \] \end_inset lo que podemos tratar como un problema de Cauchy con una e.d.o. homogénea. Así: \end_layout \begin_layout Enumerate Si \begin_inset Formula $K=0$ \end_inset , queda \begin_inset Formula $\ddot{u}=0$ \end_inset y \begin_inset Formula $u(r)=ar+b$ \end_inset para ciertos \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset , con \begin_inset Formula $0=u(0)=b$ \end_inset y \begin_inset Formula $1=u'(0)=a$ \end_inset . Por tanto \begin_inset Formula $u(r)=r$ \end_inset y \begin_inset Formula $G(r,\theta)=r^{2}$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $K>0$ \end_inset , el polinomio asociado es \begin_inset Formula $p(\lambda)=\lambda^{2}+K$ \end_inset y \begin_inset Formula $\lambda=\pm\sqrt{K}i$ \end_inset , luego una base de soluciones es \begin_inset Formula $\{\cos(\sqrt{K}r),\sin(\sqrt{K}r)\}$ \end_inset y existen \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset con \begin_inset Formula $u(r)=a\cos(\sqrt{K}r)+b\sin(\sqrt{K}r)$ \end_inset , pero \begin_inset Formula $0=u(0)=a$ \end_inset y \begin_inset Formula $1=u'(0)=b\sqrt{K}$ \end_inset , luego \begin_inset Formula $u(r)=\frac{1}{\sqrt{K}}\sin(\sqrt{K}r)$ \end_inset y \begin_inset Formula $G(r,\theta)=\frac{1}{K}\sin^{2}(\sqrt{K}r)$ \end_inset . \end_layout \begin_layout Enumerate Si \begin_inset Formula $K<0$ \end_inset , el polinomio asociado es \begin_inset Formula $p(\lambda)=\lambda^{2}-K$ \end_inset y \begin_inset Formula $\lambda=\pm\sqrt{K}$ \end_inset , luego una base de soluciones es \begin_inset Formula $\{e^{\sqrt{K}t},e^{-\sqrt{K}t}\}$ \end_inset y existen \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset con \begin_inset Formula $u(r)=ae^{\sqrt{K}t}+be^{-\sqrt{K}t}$ \end_inset . Ahora bien, \begin_inset Formula $0=u(0)=a+b$ \end_inset y \begin_inset Formula $1=u'(0)=\sqrt{K}(a-b)$ \end_inset , luego \begin_inset Formula $2a=\frac{1}{\sqrt{K}}$ \end_inset , \begin_inset Formula $2b=-\frac{1}{\sqrt{K}}$ \end_inset y, por tanto, \begin_inset Formula $u(r)=\frac{1}{2\sqrt{K}}(e^{\sqrt{K}t}-e^{-\sqrt{K}t})=\frac{1}{\sqrt{K}}\sinh(\sqrt{K}t)$ \end_inset , y \begin_inset Formula $G(r,\theta)=\frac{1}{K}\sinh^{2}(\sqrt{K}t)$ \end_inset . \end_layout \end_deeper \begin_layout Standard \series bold Teorema de Minding: \series default Dos superficies regulares con igual curvatura de Gauss constante son localmente isométricas. \end_layout \begin_layout Standard \series bold Demostración: \series default Sean \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $S_{2}$ \end_inset dos superficies regulares con curvatura de Gauss constante \begin_inset Formula $K\in\mathbb{R}$ \end_inset , \begin_inset Formula $p_{1}\in S_{1}$ \end_inset , \begin_inset Formula $p_{2}\in S_{2}$ \end_inset , \begin_inset Formula ${\cal U}_{1}$ \end_inset y \begin_inset Formula ${\cal U}_{2}$ \end_inset entornos estrellados del 0 para los que existen difeomorfismos \begin_inset Formula $\exp_{p_{1}}:{\cal U}_{1}\to U_{1}$ \end_inset y \begin_inset Formula $\exp_{p_{2}}:{\cal U}_{2}\to U_{2}$ \end_inset , \begin_inset Formula $\varepsilon>0$ \end_inset con \begin_inset Formula ${\cal D}(0_{p_{1}},\varepsilon)\subseteq{\cal U}_{1}$ \end_inset y \begin_inset Formula ${\cal D}(0_{p_{2}},\varepsilon)\subseteq{\cal U}_{2}$ \end_inset , \begin_inset Formula $V_{1}\coloneqq D(p_{1},\varepsilon)$ \end_inset y \begin_inset Formula $V_{2}\coloneqq D(p_{2},\varepsilon)$ \end_inset , entonces \begin_inset Formula $\exp_{p_{1}}:{\cal D}(0_{p_{1}},\varepsilon)\to V_{1}$ \end_inset y \begin_inset Formula $\exp_{p_{2}}:{\cal D}(0_{p_{2}},\varepsilon)\to V_{2}$ \end_inset son difeomorfismos. \end_layout \begin_layout Standard Sean ahora \begin_inset Formula $(e_{1},e_{2})$ \end_inset una base ortonormal de \begin_inset Formula $T_{p_{1}}S_{1}$ \end_inset , \begin_inset Formula $(f_{1},f_{2})$ \end_inset una de \begin_inset Formula $T_{p_{2}}S_{2}$ \end_inset y \begin_inset Formula $\tilde{\varphi}:T_{p_{1}}S_{1}\to T_{p_{2}}S_{2}$ \end_inset una isometría lineal dada por \begin_inset Formula $\tilde{\varphi}(e_{1})\coloneqq f_{1}$ \end_inset y \begin_inset Formula $\tilde{\varphi}(e_{2})\coloneqq f_{2}$ \end_inset , entonces \begin_inset Formula $\tilde{\varphi}({\cal D}(0_{p_{1}},\varepsilon))={\cal D}(0_{p_{2}},\varepsilon)$ \end_inset y \begin_inset Formula \[ \varphi:=\exp_{p_{2}}\circ\tilde{\varphi}|_{{\cal D}(0_{p_{1}},\varepsilon)}\circ\exp_{p_{1}}^{-1}:D(p_{1},\varepsilon)\to D(p_{2},\varepsilon) \] \end_inset es un difeomorfismo, y queremos ver que también es una isometría. \end_layout \begin_layout Standard Para ello, tomando coordenadas geodésicas polares \begin_inset Formula $X(r,\theta)$ \end_inset en \begin_inset Formula $D(p_{1},\varepsilon)$ \end_inset con base \begin_inset Formula $(e_{1},e_{2})$ \end_inset y \begin_inset Formula $\overline{X}(r,\theta)$ \end_inset en \begin_inset Formula $D(p_{2},\varepsilon)$ \end_inset con base \begin_inset Formula $(f_{1},f_{2})$ \end_inset , sean \begin_inset Formula $E,F,G$ \end_inset y \begin_inset Formula $\overline{E},\overline{F},\overline{G}$ \end_inset los coeficientes de la primera forma fundamental de \begin_inset Formula $X$ \end_inset y \begin_inset Formula $\overline{X}$ \end_inset , \begin_inset Formula $E=\overline{E}=1$ \end_inset , \begin_inset Formula $F=\overline{F}=0$ \end_inset y, como \begin_inset Formula $G$ \end_inset y \begin_inset Formula $\overline{G}$ \end_inset vienen dados por \begin_inset Formula $K$ \end_inset , \begin_inset Formula $G=\overline{G}$ \end_inset . Además, \begin_inset Formula \begin{align*} \varphi(X(r,\theta)) & =\varphi(\exp_{p_{1}}(r\cos\theta e_{1}+r\sin\theta e_{2}))=\exp_{p_{2}}(\tilde{\varphi}(r\cos\theta e_{1}+r\sin\theta e_{2}))=\\ & =\exp_{p_{2}}(r\cos\theta f_{1}+r\sin\theta f_{2})=\overline{X}(r,\theta), \end{align*} \end_inset luego \begin_inset Formula $d\varphi_{X(r,\theta)}:T_{X(r,\theta)}S_{1}\to T_{\varphi(X(r,\theta))}S_{2}$ \end_inset cumple \begin_inset Formula \begin{align*} d\varphi_{X(r,\theta)}(X_{r}(r,\theta)) & =\frac{d}{dr}(\varphi(X(r,\theta)))=\overline{X}_{r}(r,\theta), & d\varphi_{X(r,\theta)}(X_{\theta}(r,\theta)) & =\overline{X}_{\theta}(r,\theta), \end{align*} \end_inset de modo que \begin_inset Formula \[ {\textstyle \left\langle d\varphi_{X}(X_{r}),d\varphi_{X}(X_{r})\right\rangle =\left\langle \overline{X}_{r},\overline{X}_{r}\right\rangle =\overline{E}=E=\left\langle X_{r},X_{r}\right\rangle } \] \end_inset y, análogamente, \begin_inset Formula $\langle d\varphi_{X}(X_{r}),d\varphi_{X}(X_{\theta})\rangle=\langle X_{r},X_{\theta}\rangle$ \end_inset y \begin_inset Formula $\langle d\varphi_{X}(X_{\theta}),d\varphi_{X}(X_{\theta})\rangle=\langle X_{\theta},X_{\theta}\rangle$ \end_inset . Como \begin_inset Formula $(X_{r},X_{\theta})$ \end_inset es una base de \begin_inset Formula $T_{X}S_{1}$ \end_inset , \begin_inset Formula $\varphi$ \end_inset es una isometría. \end_layout \end_body \end_document