#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Dada una superficie regular \begin_inset Formula $S$ \end_inset , un \series bold segmento de curva diferenciable \series default en \begin_inset Formula $S$ \end_inset es una función \begin_inset Formula $\alpha:[a,b]\to S$ \end_inset para la que existen \begin_inset Formula $\varepsilon>0$ \end_inset y una curva diferenciable (no necesariamente regular) \begin_inset Formula $\beta:(a-\varepsilon,b+\varepsilon)\to S$ \end_inset de modo que \begin_inset Formula $\beta|_{[a,b]}=\alpha$ \end_inset . \end_layout \begin_layout Standard Un \series bold segmento de curva diferenciable a trozos \series default en \begin_inset Formula $S$ \end_inset es una función continua \begin_inset Formula $\alpha:[a,b]\to S$ \end_inset para la que existe una partición \begin_inset Formula $a=t_{0}<\dots0$ \end_inset tal que \begin_inset Formula $D(q,\varepsilon)$ \end_inset es un entorno normal de \begin_inset Formula $q$ \end_inset , de modo que si \begin_inset Formula $\alpha\in\Omega(p,q)$ \end_inset , para \begin_inset Formula $q'\in D(q,\varepsilon)$ \end_inset , sea \begin_inset Formula $\gamma_{q'}$ \end_inset el segmento de geodésica que une \begin_inset Formula $q$ \end_inset con \begin_inset Formula $q'$ \end_inset , entonces \begin_inset Formula $\alpha\wedge\gamma_{q'}\in\Omega(p,q')$ \end_inset , \begin_inset Formula $q'\in A$ \end_inset y, como \begin_inset Formula $q'$ \end_inset es arbitrario, \begin_inset Formula $D(q,\varepsilon)\subseteq A$ \end_inset . \end_layout \begin_layout Standard Para ver que \begin_inset Formula $A$ \end_inset es cerrado, vemos que \begin_inset Formula $A^{\complement}=S\setminus A$ \end_inset es abierto. Sea \begin_inset Formula $q\in A^{\complement}$ \end_inset y \begin_inset Formula $\varepsilon>0$ \end_inset tal que \begin_inset Formula $D(q,\varepsilon)$ \end_inset es un entorno normal de \begin_inset Formula $q$ \end_inset , entonces \begin_inset Formula $D(q,\varepsilon)\subseteq A^{\complement}$ \end_inset , pues si hubiera \begin_inset Formula $q'\in D(q,\varepsilon)\cap A$ \end_inset , sea \begin_inset Formula $\beta\in\Omega(p,q')$ \end_inset y \begin_inset Formula $\gamma_{q'}$ \end_inset el segmento de geodésica que une \begin_inset Formula $q$ \end_inset con \begin_inset Formula $q'$ \end_inset , entonces \begin_inset Formula $\beta\wedge\overline{\gamma_{q'}}\in\Omega(p,q)\#$ \end_inset . Como \begin_inset Formula $A$ \end_inset es abierto, cerrado y no vacío en el conexo \begin_inset Formula $S$ \end_inset , \begin_inset Formula $A=S$ \end_inset . \end_layout \begin_layout Standard Con esto, como \begin_inset Formula $\Omega(p,q)\neq\emptyset$ \end_inset y \begin_inset Formula $\{L(\alpha)\}_{\alpha\in\Omega(p,q)}$ \end_inset está acotado inferiormente por 0, el ínfimo existe. Queda ver que \begin_inset Formula $d$ \end_inset es una distancia. Sean \begin_inset Formula $p,q,r\in S$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $d(p,q)\geq0$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $d(p,q)=0\iff p=q$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\implies]$ \end_inset \end_layout \end_inset Por la desigualdad de Cauchy-Schwarz, sean \begin_inset Formula $\alpha:[a,b]\to S$ \end_inset en \begin_inset Formula $\Omega(p,q)$ \end_inset y \begin_inset Formula $v\coloneqq \frac{\overrightarrow{q-p}}{\Vert\overrightarrow{q-p}\Vert}$ \end_inset , entonces \begin_inset Formula \begin{align*} \Vert p-q\Vert & =\langle q-p,v\rangle=\langle q,v\rangle-\langle p,v\rangle=\langle\alpha(b),v\rangle-\langle\alpha(a),v\rangle=\\ & =\int_{a}^{b}\langle\alpha'(t),v\rangle dt\leq\int_{a}^{b}|\langle\alpha'(t),v\rangle|dt=\int_{a}^{b}\Vert\alpha'(t)\Vert dt=L(\alpha), \end{align*} \end_inset y tomando el ínfimo, \begin_inset Formula $\Vert p-q\Vert\leq\inf_{\alpha\in\Omega(p,q)}L(\alpha)=d(p,q)=0$ \end_inset , luego \begin_inset Formula $p=q$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\impliedby]$ \end_inset \end_layout \end_inset Basta tomar la curva constante, de longitud 0. \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $d(p,q)=d(q,p)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula $\Omega(q,p)=\{\overline{\alpha}\}_{\alpha\in\Omega(p,q)}$ \end_inset , pero \begin_inset Formula $L(\overline{\alpha})=L(\alpha)$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $d(p,q)\leq d(p,r)+d(r,q)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Para \begin_inset Formula $\alpha\in\Omega(p,r)$ \end_inset y \begin_inset Formula $\beta\in\Omega(r,q)$ \end_inset , \begin_inset Formula $\alpha\wedge\beta\in\Omega(p,q)$ \end_inset , luego \begin_inset Formula \[ d(p,q)=\inf_{\gamma\in\Omega(p,q)}L(\gamma)\leq L(\alpha\wedge\beta)=L(\alpha)+L(\beta). \] \end_inset Entonces \begin_inset Formula $d(p,q)-L(\beta)\leq L(\alpha)$ \end_inset y tomando el ínfimo \begin_inset Formula $d(p,q)-L(\beta)\leq d(p,r)$ \end_inset , luego \begin_inset Formula $d(p,q)-d(p,r)\leq L(\beta)$ \end_inset y tomando el ínfimo \begin_inset Formula $d(p,q)-d(p,r)\leq d(r,q)$ \end_inset . \end_layout \end_deeper \begin_layout Section Propiedades \end_layout \begin_layout Standard Sean \begin_inset Formula $S$ \end_inset una superficie regular conexa y \begin_inset Formula $p\in S$ \end_inset y \begin_inset Formula $r>0$ \end_inset con \begin_inset Formula ${\cal D}(0_{p},r)\subseteq{\cal D}_{p}$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $D(p,r)\subseteq B_{d}(p,r)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Para \begin_inset Formula $q\in D(p,r)=\exp_{p}({\cal D}(0_{p},r))$ \end_inset , existe \begin_inset Formula $v\in{\cal D}(0_{p},r)$ \end_inset , no necesariamente único, con \begin_inset Formula $q=\exp_{p}(v)$ \end_inset . Sea entonces \begin_inset Formula $\gamma:[0,1]\to D(p,r)$ \end_inset el segmento de geodésica radial de \begin_inset Formula $p$ \end_inset a \begin_inset Formula $q$ \end_inset , como \begin_inset Formula $\gamma\in\Omega(p,q)$ \end_inset , \begin_inset Formula \[ d(p,q)\leq L(\gamma)=\int_{0}^{1}\Vert\gamma'(t)\Vert dt=\Vert\gamma'(0)\Vert=\Vert v\Vert0$ \end_inset tal que, para \begin_inset Formula $r\in(0,\delta)$ \end_inset , \begin_inset Formula $D(p,r)$ \end_inset es un entorno normal de \begin_inset Formula $p$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Existe un entorno \begin_inset Formula ${\cal U}$ \end_inset estrellado respecto al 0 con \begin_inset Formula $\exp_{p}:{\cal U}\to(V\coloneqq \exp_{p}({\cal U}))$ \end_inset difeomorfismo, luego existe \begin_inset Formula $\delta>0$ \end_inset con \begin_inset Formula ${\cal D}(0,\delta)\subseteq{\cal U}$ \end_inset y, para \begin_inset Formula $r<\delta$ \end_inset , \begin_inset Formula ${\cal D}(0,r)\subseteq{\cal U}$ \end_inset y \begin_inset Formula $\exp_{p}:{\cal D}(0,r)\to D(0,r)$ \end_inset es un difeomorfismo. \end_layout \end_deeper \begin_layout Enumerate Si \begin_inset Formula $D(p,r)$ \end_inset es normal, \begin_inset Formula $D(p,r)=B_{d}(p,r)$ \end_inset . \end_layout \begin_deeper \begin_layout Standard Queremos ver que \begin_inset Formula $B_{d}(p,r)\subseteq D(p,r)$ \end_inset . Supongamos que esto no ocurre, con lo que existe \begin_inset Formula $q\in B_{d}(p,r)\setminus D(p,r)$ \end_inset . Entonces, para \begin_inset Formula $\alpha:[a,b]\to S$ \end_inset en \begin_inset Formula $\Omega(p,q)$ \end_inset y \begin_inset Formula $r^{*}\in(0,r)$ \end_inset , como \begin_inset Formula $q\notin D(p,r^{*})$ \end_inset , existe \begin_inset Formula $t^{*}\coloneqq \inf\{t\in[a,b]\mid \alpha(t)\notin D(p,r^{*})\}$ \end_inset , pero \begin_inset Formula $t\neq a$ \end_inset , por tanto \begin_inset Formula $t>a$ \end_inset , existe una sucesión creciente \begin_inset Formula $\{t_{n}\}_{n}\subseteq(a,t)$ \end_inset que tiende a \begin_inset Formula $t$ \end_inset y, por continuidad, \begin_inset Formula \[ p^{*}:=\alpha(t^{*})=\lim_{n}\alpha(t_{n})\in\overline{D(p,r^{*})}, \] \end_inset de modo que \begin_inset Formula $p^{*}\in\partial D(p,r^{*})=S(p,r^{*})$ \end_inset . Entonces existe \begin_inset Formula $v^{*}\in{\cal S}(0,r)$ \end_inset con \begin_inset Formula $p^{*}=\exp_{p}(v^{*})$ \end_inset y \begin_inset Formula $\Vert v^{*}\Vert=r^{*}$ \end_inset . Con esto, \begin_inset Formula $L(\alpha)\geq L(\alpha|_{[a,t^{*}]})\geq L(\gamma_{p^{*}})=\Vert v^{*}\Vert=r^{*}$ \end_inset , pero como \begin_inset Formula $\alpha\in\Omega(p,q)$ \end_inset es arbitrario, \begin_inset Formula $d(p,q)\geq r^{*}$ \end_inset , y como \begin_inset Formula $r^{*}\in(0,r)$ \end_inset es arbitrario, \begin_inset Formula $d(p,q)\geq r\#$ \end_inset . \end_layout \end_deeper \begin_layout Standard La topología inducida en \begin_inset Formula $S$ \end_inset por la usual en \begin_inset Formula $\mathbb{R}^{3}$ \end_inset coincide con la inducida por la distancia intrínseca en \begin_inset Formula $S$ \end_inset . \series bold Demostración: \series default Sean \begin_inset Formula ${\cal T}_{S}$ \end_inset y \begin_inset Formula ${\cal T}_{d}$ \end_inset respectivamente estas topologías: \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\subseteq]$ \end_inset \end_layout \end_inset Para \begin_inset Formula $A\in{\cal T}_{S}$ \end_inset y \begin_inset Formula $p\in A$ \end_inset , existe \begin_inset Formula $\delta>0$ \end_inset con \begin_inset Formula $B_{d_{\mathbb{R}^{3}}}(p,\delta)\cap S\subseteq A$ \end_inset , pero para \begin_inset Formula $q\in B_{d}(p,\delta)$ \end_inset es \begin_inset Formula $\Vert p-q\Vert\leq d(p,q)<\delta$ \end_inset y por tanto \begin_inset Formula $q\in B_{d_{\mathbb{R}^{3}}}(p,\delta)\cap S\subseteq A$ \end_inset , luego \begin_inset Formula $B_{d}(p,\delta)\subseteq A$ \end_inset y, como \begin_inset Formula $p$ \end_inset es arbitrario, \begin_inset Formula $A\in{\cal T}_{d}$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:1 status open \begin_layout Plain Layout \begin_inset Formula $\supseteq]$ \end_inset \end_layout \end_inset Para \begin_inset Formula $A\in{\cal T}_{d}$ \end_inset y \begin_inset Formula $p\in A$ \end_inset , existe \begin_inset Formula $\delta_{p}>0$ \end_inset con \begin_inset Formula $B_{d}(p,\delta_{p})\subseteq A$ \end_inset , y haciendo \begin_inset Formula $\delta$ \end_inset suficientemente pequeño, \begin_inset Formula $D(p,\delta_{p})$ \end_inset es normal e igual a \begin_inset Formula $B_{d}(p,\delta_{p})$ \end_inset , pero \begin_inset Formula $D(p,\delta_{p})$ \end_inset es abierto en \begin_inset Formula ${\cal T}_{S}$ \end_inset ya que \begin_inset Formula $\exp_{p}:{\cal D}(0_{p},\delta_{p})\to D(p,\delta_{p})$ \end_inset es un difeomorfismo, de modo que \begin_inset Formula $A=\bigcup_{p\in A}D(p,\delta_{p})\in{\cal T}_{S}$ \end_inset por ser unión de abiertos. \end_layout \end_body \end_document