#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input{../defs} \end_preamble \use_default_options true \maintain_unincluded_children false \language spanish \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style french \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard Una \series bold región \series default de una superficie regular \begin_inset Formula $S$ \end_inset es un \begin_inset Formula $R\subseteq S$ \end_inset abierto, conexo y \series bold relativamente compacto \series default , es decir, con clausura compacta. Si existe una parametrización \begin_inset Formula $(U,X)$ \end_inset de \begin_inset Formula $S$ \end_inset con \begin_inset Formula $R\subseteq X(U)$ \end_inset y \begin_inset Formula $f:R\to\mathbb{R}$ \end_inset es continua, la \series bold integral \series default de \begin_inset Formula $f$ \end_inset sobre \begin_inset Formula $R$ \end_inset es \begin_inset Formula \[ \int_{R}f\,dS=\iint_{X^{-1}(R)}(f\circ X)\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert =\iint_{X^{-1}(R)}(f\circ X)\sqrt{EG-F^{2}}. \] \end_inset Esta no depende de la parametrización. \series bold Demostración: \series default Sean \begin_inset Formula $(U,X)$ \end_inset y \begin_inset Formula $(\overline{U},\overline{X})$ \end_inset parametrizaciones de \begin_inset Formula $S$ \end_inset con \begin_inset Formula $R\subseteq X(U)\cap\overline{X}(\overline{U})$ \end_inset , \begin_inset Formula $h\coloneqq \overline{X}^{-1}\circ X$ \end_inset la reparametrización y \begin_inset Formula $h(u,v)=:(\overline{u}(u,v),\overline{v}(u,v))$ \end_inset , de modo que \begin_inset Formula $X=\overline{X}\circ h$ \end_inset , entonces \begin_inset Formula \begin{align*} \frac{\partial X}{\partial u} & =\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial u}+\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial u}, & \frac{\partial X}{\partial v} & =\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial v}+\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial v}, \end{align*} \end_inset con las derivadas de \begin_inset Formula $\overline{X}$ \end_inset evaluadas en \begin_inset Formula $h(u,v)$ \end_inset y el resto en \begin_inset Formula $(u,v)$ \end_inset , luego \begin_inset Formula \[ \left(\frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right)=\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial v}+\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial v}=\left(\frac{\partial\overline{u}}{\partial u}\frac{\partial\overline{v}}{\partial v}-\frac{\partial\overline{u}}{\partial v}\frac{\partial\overline{v}}{\partial u}\right)\left(\frac{\partial\overline{X}}{\partial\overline{u}}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\right), \] \end_inset pero \begin_inset Formula $\frac{\partial\overline{u}}{\partial u}\frac{\partial\overline{v}}{\partial v}-\frac{\partial\overline{u}}{\partial v}\frac{\partial\overline{v}}{\partial u}=\det(Jh)$ \end_inset , luego \begin_inset Formula \begin{multline*} \iint_{X^{-1}(R)}(f\circ X)\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert =\iint_{X^{-1}(R)}(f\circ X)|\det(Jh)|\left\Vert \frac{\partial\overline{X}}{\partial\overline{u}}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\right\Vert =\\ =\iint_{h(X^{-1}(R))=\overline{X}^{-1}(R)}(f\circ X)\left\Vert \frac{\partial\overline{X}}{\partial\overline{u}}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\right\Vert . \end{multline*} \end_inset \end_layout \begin_layout Standard El \series bold área \series default de una región \begin_inset Formula $R$ \end_inset contenida en la imagen de una parametrización de \begin_inset Formula $S$ \end_inset es \begin_inset Formula \[ A(R):=\int_{R}dS. \] \end_inset \end_layout \begin_layout Standard Si \begin_inset Formula $R$ \end_inset no está contenida en la imagen de una parametrización, es posible extender las definiciones de área y de integral de una función con soporte compacto sobre \begin_inset Formula $R$ \end_inset usando particiones diferenciables de la unidad. \end_layout \begin_layout Standard Dada una función \begin_inset Formula $\phi:S_{1}\to S_{2}$ \end_inset entre superficies regulares, definimos \begin_inset Formula $\det(d\phi):S_{1}\to\mathbb{R}$ \end_inset como \begin_inset Formula $\det(d\phi)(p)\coloneqq \det(J\phi_{p})$ \end_inset . El \series bold soporte \series default de una función \begin_inset Formula $f:D\to\mathbb{R}$ \end_inset es \begin_inset Formula $\text{sop}f\coloneqq \overline{\{x\in D\mid f(x)\neq0\}}$ \end_inset . \end_layout \begin_layout Standard \series bold Teorema del cambio de variable: \series default Si \begin_inset Formula $\phi:S_{1}\to S_{2}$ \end_inset es un difeomorfismo entre superficies regulares conexas y orientadas y \begin_inset Formula $f:S_{2}\to\mathbb{R}$ \end_inset es continua con soporte compacto, entonces \begin_inset Formula \[ \int_{S_{2}}f\,dS_{2}=\int_{S_{1}}(f\circ\phi)|\det(d\phi)|dS_{1}=\pm\int_{S_{1}}(f\circ\phi)\det(d\phi)dS_{1}. \] \end_inset \series bold Demostración \series default cuando una sola parametrización cubre toda la superficie \series bold : \series default Sea \begin_inset Formula $(U,X)$ \end_inset una parametrización de \begin_inset Formula $S_{1}$ \end_inset y \begin_inset Formula $(U,\overline{X}\coloneqq \phi\circ X)$ \end_inset una parametrización de \begin_inset Formula $S_{2}$ \end_inset , entonces \begin_inset Formula \begin{align*} \frac{\partial\overline{X}}{\partial u} & =d\phi_{X(u,v)}\left(\frac{\partial X}{\partial u}\right), & \frac{\partial\overline{X}}{\partial v} & =d\phi_{X(u,v)}\left(\frac{\partial X}{\partial v}\right), \end{align*} \end_inset luego \begin_inset Formula \[ \left\Vert \frac{\partial\overline{X}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial v}\right\Vert =\left\Vert J\phi_{X(u,v)}\frac{\partial X}{\partial u}\wedge J\phi_{X(u,v)}\frac{\partial X}{\partial v}\right\Vert =|J\theta_{X(u,v)}|\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert , \] \end_inset de modo que \begin_inset Formula \begin{align*} \int_{S_{2}}f\,dS_{2} & =\iint_{\overline{X}^{-1}(S_{2})}(f\circ\overline{X})\left\Vert \frac{\partial\overline{X}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial v}\right\Vert \\ & =\iint_{X^{-1}(\phi^{-1}(S_{2}))}(f\circ\overline{X})|\det(d\phi_{X})|\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert \\ & =\iint_{X^{-1}(S_{1})}(f\circ\phi\circ X)|\det(d\phi_{X})|\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert =\int_{S_{1}}(f\circ\phi)|\det(d\phi)|dS_{2}. \end{align*} \end_inset Para la última igualdad, como \begin_inset Formula $\phi$ \end_inset es un difeomorfismo, \begin_inset Formula $\det(d\phi_{X(u,v)})$ \end_inset no se anula y no cambia de signo. \end_layout \begin_layout Standard Como \series bold teorema \series default , si \begin_inset Formula $S$ \end_inset es una superficie regular orientada por \begin_inset Formula $N:S\to\mathbb{S}^{2}$ \end_inset , \begin_inset Formula $p\in S$ \end_inset cumple \begin_inset Formula $K(p)\neq0$ \end_inset y \begin_inset Formula $R$ \end_inset es una región de \begin_inset Formula $S$ \end_inset con \begin_inset Formula $p\in R$ \end_inset tal que \begin_inset Formula $N:R\to N(R)$ \end_inset es un difeomorfismo, entonces el área de \begin_inset Formula $N(R)\subseteq\mathbb{S}^{2}$ \end_inset es \begin_inset Formula \[ A(N(R))=\int_{R}|K|dS, \] \end_inset y \begin_inset Formula \[ |K(p)|=\lim_{\varepsilon\to0}\frac{A(N(B(p,\varepsilon)))}{A(B(p,\varepsilon))}. \] \end_inset \series bold Demostración: \series default Por el teorema del cambio de variable para \begin_inset Formula $f(p)\equiv1$ \end_inset , como \begin_inset Formula $\det(dN_{p})=-\det(dA_{p})=-K(p)$ \end_inset , \begin_inset Formula \[ A(N(R))=\int_{N(R)}d\mathbb{S}^{2}=\int_{R}|\det(dN_{p})|dS=\int_{R}|K|dS. \] \end_inset Ahora bien, por continuidad, \begin_inset Formula $K\neq0$ \end_inset en un entorno \begin_inset Formula $V$ \end_inset de \begin_inset Formula $p$ \end_inset , luego \begin_inset Formula $\det(dN_{q})\neq0$ \end_inset para \begin_inset Formula $q\in V$ \end_inset , \begin_inset Formula $N|_{V}$ \end_inset es un difeomorfismo y existe un \begin_inset Formula $\varepsilon_{0}$ \end_inset tal que, para \begin_inset Formula $\varepsilon\in(0,\varepsilon_{0}]$ \end_inset , \begin_inset Formula $B(p,\varepsilon)\subseteq V$ \end_inset y por tanto \begin_inset Formula \[ A(N(B(p,\varepsilon)))=\int_{B(p,\varepsilon)}|K|dS=|K(p_{\varepsilon})|\int_{B(p,\varepsilon)}dS=|K(p_{\varepsilon})|A(B(p,\varepsilon)), \] \end_inset donde \begin_inset Formula $p_{\varepsilon}\in B(p,\varepsilon)$ \end_inset se obtiene del teorema del punto medio. Despejando \begin_inset Formula $|K(p_{\varepsilon})|$ \end_inset y tomando límites cuando \begin_inset Formula $\varepsilon\to0$ \end_inset se obtiene el resultado. \end_layout \end_body \end_document