1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\use_default_options true
\maintain_unincluded_children false
\language spanish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style french
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
Dado un problema de valores iniciales
\begin_inset Formula
\[
\left\{ \begin{aligned}\dot{x} & =f(t,x),\\
x(a) & =x_{0},
\end{aligned}
\right.
\]
\end_inset
los
\series bold
métodos de paso fijo
\series default
toman un
\series bold
paso
\series default
\begin_inset Formula $h>0$
\end_inset
y particionan
\begin_inset Formula $[a,b]$
\end_inset
con
\begin_inset Formula $t_{i}:=a+hi$
\end_inset
, aunque esto se suele calcular como
\begin_inset Formula $t_{0}=a$
\end_inset
y
\begin_inset Formula $t_{i}=t_{i-1}+h$
\end_inset
para
\begin_inset Formula $i\geq1$
\end_inset
.
\end_layout
\begin_layout Section
Método de Euler
\end_layout
\begin_layout Standard
El
\series bold
método de Euler
\series default
viene dado por
\begin_inset Formula $\omega_{0}:=x_{0}$
\end_inset
y
\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hf(t_{i},\omega_{i})$
\end_inset
.
Para obtener el valor para un
\begin_inset Formula $t\in(t_{i-1},t_{i})$
\end_inset
, podemos interpolar con el propio método, lo que si se hace desde
\begin_inset Formula $t_{i-1}$
\end_inset
equivale a una interpolación lineal o una interpolación de Newton en los
puntos
\begin_inset Formula $(t_{i-1},\omega_{i-1})$
\end_inset
y
\begin_inset Formula $(t_{i},\omega_{i})$
\end_inset
.
\end_layout
\begin_layout Standard
\series bold
Teorema de convergencia del método de Euler:
\series default
Sean
\begin_inset Formula $a,b\in\mathbb{R}$
\end_inset
con
\begin_inset Formula $a<b$
\end_inset
,
\begin_inset Formula $D\subseteq\mathbb{R}^{2}$
\end_inset
un abierto conexo,
\begin_inset Formula $x_{0}\in\mathbb{R}$
\end_inset
con
\begin_inset Formula $(a,x_{0})\in D$
\end_inset
,
\begin_inset Formula $f:D\to\mathbb{R}$
\end_inset
lipschitziana en
\begin_inset Formula $D$
\end_inset
en la segunda variable con constante de lipschitzianidad
\begin_inset Formula $K\geq0$
\end_inset
,
\begin_inset Formula $n\in\mathbb{N}^{*}$
\end_inset
,
\begin_inset Formula $h:=\frac{b-a}{n}$
\end_inset
,
\begin_inset Formula $x:[a,b]\to\mathbb{R}$
\end_inset
una solución de
\begin_inset Formula
\[
\left\{ \begin{aligned}\dot{x} & =f(t,x),\\
x(a) & =x_{0}
\end{aligned}
\right.
\]
\end_inset
con
\begin_inset Formula $\ddot{x}(D)$
\end_inset
acotada por un
\begin_inset Formula $C\geq0$
\end_inset
,
\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$
\end_inset
los puntos dados por el método de Euler con paso
\begin_inset Formula $h$
\end_inset
para dicho problema con redondeo, dado por
\begin_inset Formula
\[
\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\
\omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1},
\end{aligned}
\right.
\]
\end_inset
con cada
\begin_inset Formula $|\delta_{i}|<\delta$
\end_inset
para un cierto
\begin_inset Formula $\delta\geq0$
\end_inset
, y
\begin_inset Formula $x_{i}:=x(t_{i})$
\end_inset
para cada
\begin_inset Formula $i$
\end_inset
, entonces
\begin_inset Formula
\[
\max_{0\leq i\leq n}|x_{i}-\omega_{i}|\leq e^{(b-a)K}\delta+\left(\frac{e^{(b-a)K}-1}{K}\right)\left(\frac{1}{2}Ch+\frac{\delta}{h}\right).
\]
\end_inset
En particular, sin redondeo el método de Euler tiene una precisión de
\begin_inset Formula $O(h)$
\end_inset
.
\series bold
Demostración:
\series default
Por Taylor,
\begin_inset Formula
\[
x_{i+1}=x(t_{i}+h)=x(t_{i})+h\dot{x}(t_{i})+\frac{1}{2}h^{2}\ddot{x}(\xi_{i})=x_{i}+hf(t_{i},x_{i})+\frac{1}{2}h^{2}\ddot{x}(\xi_{i})
\]
\end_inset
para algún
\begin_inset Formula $\xi_{i}\in[t_{i},t_{i+1}]$
\end_inset
.
Queremos ver que, para
\begin_inset Formula $i\in\{0,\dots,n\}$
\end_inset
,
\begin_inset Formula
\[
|x_{i}-\omega_{i}|\leq(1+hK)^{i}\delta+\sum_{j=0}^{i-1}(1+hK)^{j}\left(\frac{1}{2}Ch^{2}+\delta\right).
\]
\end_inset
Para
\begin_inset Formula $i=0$
\end_inset
esto es obvio, y supuesto esto probado para un
\begin_inset Formula $i\in\{0,\dots,n-1\}$
\end_inset
,
\begin_inset Formula
\begin{align*}
|y_{i+1}-\omega_{i+1}| & =\left|(y_{i}-\omega_{i})+h(f(t_{i},y_{i})-f(t_{i},\omega_{i}))+\frac{1}{2}h^{2}\ddot{y}(\xi_{i})-\delta_{i+1}\right|\\
& \leq|y_{i}-\omega_{i}|+h|f(t_{i},y_{i})-f(t_{i},\omega_{i})|+\frac{1}{2}h^{2}|\ddot{y}(\xi_{i})|+|\delta_{i+1}|\\
& \leq(1+hK)|y_{i}-\omega_{i}|+\frac{1}{2}Ch^{2}+\delta\\
& \leq(1+hK)\left((1+hK)^{i}\delta+\sum_{j=0}^{i-1}(1+hK)^{j}\left(\frac{1}{2}Ch^{2}+\delta\right)\right)+\frac{1}{2}Ch^{2}+\delta\\
& =(1+hK)^{i+1}\delta+\sum_{j=0}^{i}(1+hK)^{j}\left(\frac{1}{2}Ch^{2}+\delta\right).
\end{align*}
\end_inset
Ahora bien,
\begin_inset Formula $\sum_{j=0}^{i}(1+hK)^{j}=\frac{(1+hK)^{i+1}-1}{(1+hK)-1}=\frac{(1+hK)^{i+1}-1}{hK}$
\end_inset
, y para
\begin_inset Formula $t\in\mathbb{R}$
\end_inset
, existe
\begin_inset Formula $\xi$
\end_inset
con
\begin_inset Formula $e^{t}=1+t+\frac{t^{2}}{2}e^{\xi}\geq1+t$
\end_inset
y por tanto
\begin_inset Formula $(1+t)^{n}\leq e^{nt}$
\end_inset
, luego en particular
\begin_inset Formula $(1+hK)^{i+1}\leq(1+hK)^{n}\leq e^{hKn}=e^{(b-a)K}$
\end_inset
y
\begin_inset Formula
\[
|y_{i}-\omega_{i}|\leq e^{(b-a)K}+\frac{e^{(b-a)K}-1}{hK}\left(\frac{1}{2}Ch^{2}+\delta\right).
\]
\end_inset
\end_layout
\begin_layout Standard
Si
\begin_inset Formula $x:[a,b]\to\mathbb{R}$
\end_inset
es de clase
\begin_inset Formula ${\cal C}^{3}$
\end_inset
,
\begin_inset Formula $\frac{\partial f}{\partial x}$
\end_inset
y
\begin_inset Formula $\frac{\partial^{2}f}{\partial x^{2}}$
\end_inset
son continuas y
\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$
\end_inset
son los puntos dados por el método de Euler en
\begin_inset Formula $[a,b]$
\end_inset
con paso
\begin_inset Formula $h$
\end_inset
,
\begin_inset Formula $x_{i}-\omega_{i}=hD(t_{i})+O(h^{2})$
\end_inset
, donde
\begin_inset Formula $D$
\end_inset
es la solución del problema
\begin_inset Formula
\[
\left\{ \begin{aligned}\dot{D}(t) & =\frac{\partial f}{\partial x}(t,x(t))D(t)+\frac{1}{2}\ddot{x}(t),\\
D(t_{0}) & =0.
\end{aligned}
\right.
\]
\end_inset
De aquí, si
\begin_inset Formula $(t_{i},\xi_{i})_{i=0}^{2n}$
\end_inset
son los puntos dados por el método de Euler en
\begin_inset Formula $[a,b]$
\end_inset
con paso
\begin_inset Formula $\frac{h}{2}$
\end_inset
,
\end_layout
\begin_layout Enumerate
\begin_inset Formula $|x_{i}-\xi_{2i}|=(\xi_{2i}-\omega_{i})+O(h^{2})$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Como
\begin_inset Formula $x_{i}-\omega_{i}=hD(t)+O(h^{2})$
\end_inset
y
\begin_inset Formula $x_{i}-\xi_{2i}=\frac{h}{2}D(t)+O(h^{2})$
\end_inset
, despejando,
\begin_inset Formula $x_{i}-2\xi_{i}+\omega_{i}=O(h^{2})$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
\begin_inset Formula $y_{i}:=2\xi_{2i}-\omega_{i}$
\end_inset
es un método de paso fijo
\begin_inset Formula $h$
\end_inset
de orden
\begin_inset Formula $O(h^{2})$
\end_inset
.
\end_layout
\begin_layout Section
Métodos de Taylor
\end_layout
\begin_layout Standard
Dado un método de paso fijo de la forma
\begin_inset Formula $\omega_{0}:=\alpha$
\end_inset
,
\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$
\end_inset
, llamamos
\series bold
error local de truncamiento
\series default
en
\begin_inset Formula $i\in\{1,\dots,n\}$
\end_inset
a
\begin_inset Formula
\[
\tau_{i}(h):=\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i-1},x_{i-1}).
\]
\end_inset
\end_layout
\begin_layout Standard
El
\series bold
método de Taylor
\series default
de orden
\begin_inset Formula $p\in\mathbb{N}^{*}$
\end_inset
es el dado por
\begin_inset Formula $\omega_{0}=x_{0}$
\end_inset
y
\begin_inset Formula
\[
\omega_{i+1}=\omega_{i}+h\left(f(t_{i},\omega_{i})+\frac{h}{2}f'(t_{i},\omega_{i})+\dots+\frac{h^{p-1}}{p!}f^{(p-1)}(t_{i},\omega_{i})\right),
\]
\end_inset
donde
\begin_inset Formula $f^{(p)}(t_{i},\omega_{i})$
\end_inset
se define como
\begin_inset Formula $x^{(p+1)}(t_{i})$
\end_inset
en el problema con la misma e.d.o.
pero condición inicial
\begin_inset Formula $x(t_{i})=\omega_{i}$
\end_inset
.
Por ejemplo,
\begin_inset Formula
\[
f'(t_{i})=\ddot{x}(t_{i})=\frac{\partial f}{\partial t}(t,x(t))+\frac{\partial f}{\partial x}(t,x(t))\dot{x}(t)=\frac{\partial f}{\partial t}(t_{i},\omega_{i})+\frac{\partial f}{\partial x}(t_{i},\omega_{i})f(t_{i},\omega_{i}).
\]
\end_inset
El método de Euler es el método de Taylor de orden 1.
\end_layout
\begin_layout Standard
Como
\series bold
teorema
\series default
, si
\begin_inset Formula $x\in{\cal C}^{(p+1)}[a,b]$
\end_inset
, el error local de truncamiento del método de Taylor de orden
\begin_inset Formula $p$
\end_inset
es
\begin_inset Formula $O(h^{p})$
\end_inset
.
\series bold
Demostración:
\series default
\begin_inset Formula
\[
x(t_{i+1})=x(t_{i}+h)=x(t_{i})+h\dot{x}(t_{i})+\dots+\frac{h^{p}}{p!}x^{(p)}(t_{i})+\frac{h^{p+1}}{(p+1)!}x^{(p+1)}(\xi_{i})
\]
\end_inset
para un cierto
\begin_inset Formula $\xi_{i}\in[t_{i},t_{i+1}]$
\end_inset
, luego
\begin_inset Formula
\[
\tau_{i+1}(h)=\frac{x(t_{i+1})-x(t_{i})}{h}-\left(\dot{x}(t_{i})+\frac{h}{2}\ddot{x}(t_{i})+\dots+\frac{h^{p-1}}{p!}x^{(p)}(t_{i})\right)=\frac{h^{p}}{(p+1)!}x^{(p+1)}(\xi_{i}),
\]
\end_inset
pero
\begin_inset Formula $[a,b]$
\end_inset
es compacto y por tanto
\begin_inset Formula $x^{(p+1)}([a,b])$
\end_inset
es acotado, digamos, por
\begin_inset Formula $M$
\end_inset
, por lo que
\begin_inset Formula $|\tau_{i+1}(h)|\leq\frac{M}{(p+1)!}h^{p}=O(h^{p})$
\end_inset
.
\end_layout
\end_body
\end_document
|