diff options
Diffstat (limited to '2.3.4.4.lyx')
| -rw-r--r-- | 2.3.4.4.lyx | 92 | 
1 files changed, 23 insertions, 69 deletions
| diff --git a/2.3.4.4.lyx b/2.3.4.4.lyx index 4f62d33..0172abf 100644 --- a/2.3.4.4.lyx +++ b/2.3.4.4.lyx @@ -92,23 +92,6 @@  \begin_body  \begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO 5, - 10, - 14, - 21 (3pp., - 1:08) -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard  \begin_inset ERT  status open @@ -722,74 +705,45 @@ answer  \end_inset  These are precisely the 0-2-trees in exercise 2.3–20. - We know 0-2-trees always have an odd number of nodes. - Let  -\begin_inset Formula $b_{n}$ -\end_inset - - be the number of such trees with  -\begin_inset Formula $2n+1$ -\end_inset - - nodes, - then  -\begin_inset Formula $b_{0}=1$ + We know 0-2-trees always have an odd number of nodes, + say  +\begin_inset Formula $2m+1$  \end_inset - and, - for  -\begin_inset Formula $n>0$ + nodes. + By the construction in the text, + these trees correspond to sequences of  +\begin_inset Formula $2m$  \end_inset -, -\begin_inset Formula  -\[ -b_{n}=\sum_{m=0}^{n-1}b_{m}b_{n-m-1}, -\] - + nodes where each node that appears does so exactly twice. + There are  +\begin_inset Formula $\binom{2m+1}{m}$  \end_inset -as the root would have  -\begin_inset Formula $2m+1$ + ways to choose which nodes  +\emph on +do +\emph default + appear in the sequence, + and  +\begin_inset Formula $\frac{(2m)!}{2^{m}}$  \end_inset - nodes in the left side and  -\begin_inset Formula $2(n-m-1)+1=2n-2m-1$ + ways to arranging them (we can think of arranging  +\begin_inset Formula $2m$  \end_inset - nodes in the right side. - Then, + elements and then discarding the relative order of equal pairs of elements). + This gives us  \begin_inset Formula   \[ -B(z)\coloneqq\sum_{n\geq0}b_{n}z^{n}=1+\sum_{n\geq1}\sum_{m=0}^{n-1}b_{m}b_{n-m-1}z^{n}=1+z\sum_{m,k\geq0}b_{m}b_{k}z^{m+k}=1+zB(z)^{2}, +\binom{2m+1}{m}(2m)!\Bigg/2^{m}  \]  \end_inset -so  -\begin_inset Formula $zB(z)^{2}-B(z)+1=0$ -\end_inset - - and  -\begin_inset Formula $B(z)=\frac{1-\sqrt{1-4z}}{2z}$ -\end_inset - -, - where we take the negative sign as it is the one where the solution converges at  -\begin_inset Formula $z=0$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO -\end_layout - -\end_inset - - +labeled oriented 0-2-trees.  \end_layout  \end_body | 
