aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--vol2/4.2.1.lyx589
-rw-r--r--vol2/index.lyx11
2 files changed, 600 insertions, 0 deletions
diff --git a/vol2/4.2.1.lyx b/vol2/4.2.1.lyx
new file mode 100644
index 0000000..91b9f24
--- /dev/null
+++ b/vol2/4.2.1.lyx
@@ -0,0 +1,589 @@
+#LyX 2.4 created this file. For more info see https://www.lyx.org/
+\lyxformat 620
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input defs
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children no
+\language english
+\language_package default
+\inputencoding utf8
+\fontencoding auto
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_roman_osf false
+\font_sans_osf false
+\font_typewriter_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\float_placement class
+\float_alignment class
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_formatted_ref 0
+\use_minted 0
+\use_lineno 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style english
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tablestyle default
+\tracking_changes false
+\output_changes false
+\change_bars false
+\postpone_fragile_content false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\docbook_table_output 0
+\docbook_mathml_prefix 1
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+exerc1[10]
+\end_layout
+
+\end_inset
+
+How would Avogadro's number and Planck's constant (3) be represented in base 100,
+ excess 50,
+ four-digit floating point notation?
+ (This would be the representatioon used by
+\family typewriter
+MIX
+\family default
+,
+ as in (4),
+ when the byte size is 100.)
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+answer
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+hfil
+\end_layout
+
+\end_inset
+
+Avogadro's number
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+quad
+\backslash
+hfil
+\end_layout
+
+\end_inset
+
+Planck's constant
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+quad
+\backslash
+hfil
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+hfil
+\backslash
+mixbox{
+\backslash
+byte{+}
+\backslash
+byte{62}
+\backslash
+byte{60}
+\backslash
+byte{22}
+\backslash
+byte{14}
+\backslash
+byte{0}}
+\end_layout
+
+\begin_layout Plain Layout
+
+
+\backslash
+hfil
+\backslash
+mixbox{
+\backslash
+byte{+}
+\backslash
+byte{37}
+\backslash
+byte{66}
+\backslash
+byte{26}
+\backslash
+byte{10}
+\backslash
+byte{0}}
+\end_layout
+
+\begin_layout Plain Layout
+
+
+\backslash
+hfil
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+rexerc4[16]
+\end_layout
+
+\end_inset
+
+Assume that
+\begin_inset Formula $b=10$
+\end_inset
+
+,
+
+\begin_inset Formula $p=8$
+\end_inset
+
+.
+ What result does Algorithm A give for
+\begin_inset Formula $(50,+.98765432)\oplus(49,+.33333333)$
+\end_inset
+
+?
+ For
+\begin_inset Formula $(53,-.99987654)\oplus(54,+.10000000)$
+\end_inset
+
+?
+ For
+\begin_inset Formula $(45,-.50000001)\oplus(54,+.10000000)$
+\end_inset
+
+?
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula
+\begin{align*}
+(50,+.98765432)\oplus(49,+.33333333) & \to(50,+1.020987653)\to(51,+.10209877)\\
+(53,-.99987654)\oplus(54,+.10000000) & \to(54,.000012346)\to(50,+.12346000)\\
+(45,-.50000001)\oplus(54,+.10000000) & \to(54,+.09999999949999999)\to(53,+.99999999)
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+rexerc5[24]
+\end_layout
+
+\end_inset
+
+Let us day that
+\begin_inset Formula $x\sim y$
+\end_inset
+
+ (with respect to a given radix
+\begin_inset Formula $b$
+\end_inset
+
+) if
+\begin_inset Formula $x$
+\end_inset
+
+ and
+\begin_inset Formula $y$
+\end_inset
+
+ are real numbers satisfying the following conditions:
+\begin_inset Formula
+\begin{gather*}
+\lfloor x/b\rfloor=\lfloor y/b\rfloor;\\
+x\bmod b=0\iff y\bmod b=0;\\
+0<x\bmod b<\tfrac{1}{2}b\iff0<y\bmod b<\tfrac{1}{2}b;\\
+x\bmod b=\tfrac{1}{2}b\iff y\bmod b=\tfrac{1}{2}b;\\
+\tfrac{1}{2}b<x\bmod b<b\iff\tfrac{1}{2}b<y\bmod b<b.
+\end{gather*}
+
+\end_inset
+
+Prove that if
+\begin_inset Formula $f_{v}$
+\end_inset
+
+ is replaced by
+\begin_inset Formula $b^{-p-2}F_{v}$
+\end_inset
+
+ between steps A5 and A6 of Algorithm A,
+ where
+\begin_inset Formula $F_{v}\sim b^{p+2}f_{v}$
+\end_inset
+
+,
+ the result of that algorithm will be unchanged.
+ (If
+\begin_inset Formula $F_{v}$
+\end_inset
+
+ is an integer and
+\begin_inset Formula $b$
+\end_inset
+
+ is even,
+ this operation essentially truncates
+\begin_inset Formula $f_{v}$
+\end_inset
+
+ to
+\begin_inset Formula $p+2$
+\end_inset
+
+ places while remembering whether any nonzero digits have been dropped,
+ thereby minimizing the length of register that is needed for the addition in step A6.)
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+answer
+\end_layout
+
+\end_inset
+
+Note that the conditions are equivalent to saying that
+\begin_inset Formula $\lfloor2x/b\rfloor=\lfloor2y/b\rfloor$
+\end_inset
+
+ and that
+\begin_inset Formula $2x\bmod b=0\iff2y\bmod b=0$
+\end_inset
+
+.
+ This would mean that
+\begin_inset Formula $\lfloor2F_{v}/b\rfloor=\lfloor2b^{p+1}(b^{-p-2}F_{v})\rfloor=\lfloor2b^{p+1}f_{v}\rfloor$
+\end_inset
+
+,
+ and that
+\begin_inset Formula $2b^{p+1}f_{v}\in\mathbb{Z}\iff2b^{p+1}(2b^{-p-2}F_{v})\in\mathbb{Z}$
+\end_inset
+
+.
+ If
+\begin_inset Formula $2b^{p+1}f_{v}\in\mathbb{Z}$
+\end_inset
+
+,
+ then
+\begin_inset Formula $b^{-p-2}F_{v}=f_{v}$
+\end_inset
+
+ and nothing changes.
+\end_layout
+
+\begin_layout Standard
+Now let's assume that
+\begin_inset Formula $2b^{p+1}f_{v}\notin\mathbb{Z}$
+\end_inset
+
+,
+ and let's denote with
+\begin_inset Formula $^{\prime}$
+\end_inset
+
+ the values obtained by Algorithm A when substituting
+\begin_inset Formula $f_{v}$
+\end_inset
+
+ by
+\begin_inset Formula $b^{-p-2}F_{v}$
+\end_inset
+
+.
+ Because
+\begin_inset Formula $b^{p}f_{u}\in\mathbb{Z}$
+\end_inset
+
+,
+ we have
+\begin_inset Formula $b^{p+2}f_{w}\sim b^{p+2}f'_{w}$
+\end_inset
+
+ and
+\begin_inset Formula $2b^{p+1}f_{w},2b^{p+1}f'_{w}\notin\mathbb{Z}$
+\end_inset
+
+.
+ This means that,
+ in step N1,
+
+\begin_inset Formula $|f|\geq1\iff|f'|\geq1$
+\end_inset
+
+ and
+\begin_inset Formula $f\neq0$
+\end_inset
+
+,
+ and N4,
+ if run,
+ preserves these conditions.
+ It also means that step N3 runs at most once,
+ as the opposite would imply that
+\begin_inset Formula $|bf'_{w}|<1/b$
+\end_inset
+
+,
+ which happens if and only if
+\begin_inset Formula $|bf_{w}|<1/b$
+\end_inset
+
+,
+ if and only if
+\begin_inset Formula $|f_{w}|<1/b^{2}$
+\end_inset
+
+,
+ but
+\begin_inset Formula $f_{u}\geq.1$
+\end_inset
+
+ because inputs are normalized,
+ so this would imply
+\begin_inset Formula $f_{v}>.09$
+\end_inset
+
+ and
+\begin_inset Formula $e_{u}-e_{v}\leq1$
+\end_inset
+
+,
+ so
+\begin_inset Formula $f_{w}$
+\end_inset
+
+ would have at most
+\begin_inset Formula $p+1$
+\end_inset
+
+ digits and
+\begin_inset Formula $2b^{p+1}f_{w}\in\mathbb{Z}\#$
+\end_inset
+
+.
+ Therefore N2 produces the same results for
+\begin_inset Formula $f$
+\end_inset
+
+ and
+\begin_inset Formula $f'$
+\end_inset
+
+ every time it runs and,
+ when we reach step N5,
+
+\begin_inset Formula $b^{p+1}f\sim b^{p+1}f'$
+\end_inset
+
+ and
+\begin_inset Formula $2b^{p}f,2b^{p}f'\notin\mathbb{Z}$
+\end_inset
+
+,
+ so step N5 produces the same result in both cases and the rest of the algorithm runs over the same state and produces the same result.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+rexerc11[M20]
+\end_layout
+
+\end_inset
+
+Give an example of normalized,
+ excess 50,
+ eight-digit floating decimal numbers
+\begin_inset Formula $u$
+\end_inset
+
+ and
+\begin_inset Formula $v$
+\end_inset
+
+ for which rounding overflow occurs in multiplication.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+answer
+\end_layout
+
+\end_inset
+
+An illustrative example would be
+\begin_inset Formula
+\[
+(50,.99999990)\otimes(50,.10000001).
+\]
+
+\end_inset
+
+The result would be
+\begin_inset Formula $(50,.0999999999999990)$
+\end_inset
+
+,
+ which becomes
+\begin_inset Formula $(50,.10000000)$
+\end_inset
+
+ after shifting left in N3 and then right in N4 after N5 rounds up to
+\begin_inset Formula $(49,1.)$
+\end_inset
+
+.
+\end_layout
+
+\end_body
+\end_document
diff --git a/vol2/index.lyx b/vol2/index.lyx
index 816a76b..fba036c 100644
--- a/vol2/index.lyx
+++ b/vol2/index.lyx
@@ -997,6 +997,17 @@ Floating Point Arithmetic
Single-Precision Calculations
\end_layout
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "4.2.1.lyx"
+literal "false"
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Subsection
Accuracy of Floating Point Arithmetic
\end_layout