From 8bbe7955e154bac1eeda33db9530b016725f7fdd Mon Sep 17 00:00:00 2001 From: Juan MarĂ­n Noguera Date: Sun, 1 Dec 2024 14:37:50 +0100 Subject: Convert into git repository --- 1.2.4.lyx | 2433 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2433 insertions(+) create mode 100644 1.2.4.lyx (limited to '1.2.4.lyx') diff --git a/1.2.4.lyx b/1.2.4.lyx new file mode 100644 index 0000000..ed3730a --- /dev/null +++ b/1.2.4.lyx @@ -0,0 +1,2433 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[00] +\end_layout + +\end_inset + +What are +\begin_inset Formula $\lfloor1.1\rfloor$ +\end_inset + +, + +\begin_inset Formula $\lfloor-1.1\rfloor$ +\end_inset + +, + +\begin_inset Formula $\lceil-1.1\rceil$ +\end_inset + +, + +\begin_inset Formula $\lfloor0.99999\rfloor$ +\end_inset + +, + and +\begin_inset Formula $\lfloor\lg35\rfloor$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\lfloor1.1\rfloor=1$ +\end_inset + +, + +\begin_inset Formula $\lfloor-1.1\rfloor=-2$ +\end_inset + +, + +\begin_inset Formula $\lceil-1.1\rceil=-1$ +\end_inset + +, + +\begin_inset Formula $\lfloor0.99999\rfloor=0$ +\end_inset + +, + +\begin_inset Formula $\lfloor\lg35\rfloor=5$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[01] +\end_layout + +\end_inset + +What is +\begin_inset Formula $\lceil\lfloor x\rfloor\rceil$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The same as +\begin_inset Formula $\lfloor x\rfloor$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc3[10] +\end_layout + +\end_inset + +Let +\begin_inset Formula $n$ +\end_inset + + be an integer, + and let +\begin_inset Formula $x$ +\end_inset + + be a real number. + Prove that +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lfloor x\rfloorn\#$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Multiply the inequality by +\begin_inset Formula $-1$ +\end_inset + + and add +\begin_inset Formula $x+n$ +\end_inset + + to each member. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + +\begin_inset Formula $n\leq x$ +\end_inset + + and any +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + with +\begin_inset Formula $m\leq x$ +\end_inset + + has +\begin_inset Formula $m0$ +\end_inset + +. + Show that if +\begin_inset Formula $(x-z)/y$ +\end_inset + + is an integer and if +\begin_inset Formula $0\leq z1$ +\end_inset + + are necessary and sufficient to guarantee that +\begin_inset Formula $\lfloor\log_{b}x\rfloor=\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ +\end_inset + + for all real +\begin_inset Formula $x\geq1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It happens if and only if +\begin_inset Formula $b\in\mathbb{Z}$ +\end_inset + +. + To prove this, + observe that, + since the logarithm in base +\begin_inset Formula $b>1$ +\end_inset + + is strictly increasing, + +\begin_inset Formula $\log_{b}\lfloor x\rfloor<\log_{b}x$ +\end_inset + +, + so +\begin_inset Formula $\lfloor\log_{b}x\rfloor\neq\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ +\end_inset + + if and only if +\begin_inset Formula $\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor <\lfloor\log_{b}x\rfloor$ +\end_inset + +, + that is, + if there exists an integer +\begin_inset Formula $k$ +\end_inset + + (namely +\begin_inset Formula $\lfloor\log_{b}x\rfloor$ +\end_inset + +) such that +\begin_inset Formula $\log_{b}\lfloor x\rfloor0$ +\end_inset + +, + prove that +\begin_inset Formula +\[ +\lfloor(x+m)/n\rfloor=\left\lfloor (\lfloor x\rfloor+m)/n\right\rfloor +\] + +\end_inset + +for all real +\begin_inset Formula $x$ +\end_inset + +. + (When +\begin_inset Formula $m=0$ +\end_inset + +, + we have an important special case.) Does an analogous result hold for the ceiling function? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Clearly +\begin_inset Formula $\left\lfloor \frac{\lfloor x\rfloor+m}{n}\right\rfloor \leq\left\lfloor \frac{x+m}{n}\right\rfloor $ +\end_inset + +. + If this inequality were strict, + however, + there would be an integer +\begin_inset Formula $k$ +\end_inset + + such that +\begin_inset Formula $\frac{\lfloor x\rfloor+m}{n}