From 4f670b750af5c11e1eac16d9cd8556455f89f46a Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Fri, 16 May 2025 22:18:44 +0200 Subject: Changed layout for more manageable volumes --- 1.2.6.lyx | 3599 ------------------------------------------------------------- 1 file changed, 3599 deletions(-) delete mode 100644 1.2.6.lyx (limited to '1.2.6.lyx') diff --git a/1.2.6.lyx b/1.2.6.lyx deleted file mode 100644 index 047325d..0000000 --- a/1.2.6.lyx +++ /dev/null @@ -1,3599 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\usepackage{amsmath} -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\stirla}[2]{\genfrac[]{0pt}{}{#1}{#2}} -{\begin{bmatrix}{\textstyle #1}\\ -{\textstyle #2} -\end{bmatrix}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\stirlb}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} -{\begin{Bmatrix}{\textstyle #1}\\ -{\textstyle #2} -\end{Bmatrix}} -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc1[00] -\end_layout - -\end_inset - -How many combinations of -\begin_inset Formula $n$ -\end_inset - - things taken -\begin_inset Formula $n-1$ -\end_inset - - at a time are possible? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\binom{n}{n-1}=\frac{n!}{1!(n-1)!}=n$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc2[00] -\end_layout - -\end_inset - -What is -\begin_inset Formula $\binom{0}{0}$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\binom{0}{0}=\frac{1!}{1!1!}=1$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc3[00] -\end_layout - -\end_inset - -How many bridge hands (13 cards out of a 52-card deck) are possible? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\binom{52}{13}=635013559600$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc4[10] -\end_layout - -\end_inset - -Give the answer to exercise 3 as a product of prime numbers. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We have -\begin_inset Formula $\binom{52}{13}=\frac{52!}{13!39!}$ -\end_inset - -. - Using Equation 1.2.5.8: -\end_layout - -\begin_layout Standard -\begin_inset Formula -\begin{align*} -52! & =2^{49}3^{23}5^{12}7^{8}11^{4}13^{4}17^{3}19^{2}23^{2}\cdot29\cdot31\cdot37\cdot41\cdot43\cdot47,\\ -39! & =2^{35}3^{18}5^{8}7^{5}11^{3}13^{3}17^{2}19^{2}\cdot23\cdot29\cdot31\cdot37\\ -13! & =2^{10}3^{5}5^{2}\cdot7\cdot11\cdot13\\ -\hline \binom{52}{13} & =2^{4}5^{2}7^{2}\cdot17\cdot23\cdot41\cdot43\cdot47. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc5[05] -\end_layout - -\end_inset - -Use Pascal's triangle to explain the fact that -\begin_inset Formula $11^{4}=14641$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $11^{4}=(10+1)^{4}=\binom{4}{0}10^{4}1^{0}+\binom{4}{1}10^{3}1^{1}+\binom{4}{2}10^{2}1^{2}+\binom{4}{3}10^{1}1^{3}+\binom{4}{4}10^{0}1^{4}=14641$ -\end_inset - -. - The pattern works for the number 11 in any given base until the number 10 or higher appears, - which in this case happens in the next row. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc6[10] -\end_layout - -\end_inset - -Pascal's triangle (Table 1) can be extended in all directions by use of the addition formula, - Eq. - (9). - Find the three rows that go on -\emph on -top -\emph default - of Table 1 (i.e. - for -\begin_inset Formula $r=-1$ -\end_inset - -, - -\begin_inset Formula $-2$ -\end_inset - -, - and -\begin_inset Formula $-3$ -\end_inset - -). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The table is based on the properties that -\begin_inset Formula $\binom{r}{k}=\binom{r-1}{k}+\binom{r-1}{k-1}$ -\end_inset - - and that -\begin_inset Formula $\binom{r}{k}=0$ -\end_inset - - for -\begin_inset Formula $k<0$ -\end_inset - -. - This implies that -\begin_inset Formula $\binom{r}{0}=1$ -\end_inset - - for any -\begin_inset Formula $r\in\mathbb{Z}$ -\end_inset - - (really for any -\begin_inset Formula $r\in\mathbb{R}$ -\end_inset - -) and that -\begin_inset Formula $\binom{r-1}{k}=\binom{r}{k}-\binom{r-1}{k-1}$ -\end_inset - - (the one below in the table minus the one on the left). -\end_layout - -\begin_layout Standard -\align center -\begin_inset Tabular - - - - - - - - - - - - - - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $r$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{0}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{1}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{2}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{3}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{4}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{5}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{6}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{7}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{8}$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{9}$ -\end_inset - - -\end_layout - -\end_inset - - - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-3$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-3$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $6$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-10$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $15$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-21$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $28$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-36$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $45$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-55$ -\end_inset - - -\end_layout - -\end_inset - - - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-2$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-2$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $3$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-4$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $5$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-6$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $7$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-8$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $9$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-10$ -\end_inset - - -\end_layout - -\end_inset - - - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $1$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset - - -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset - - - - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc8[00] -\end_layout - -\end_inset - -What property of Pascal's triangle is reflected in the -\begin_inset Quotes eld -\end_inset - -symmetry condition, -\begin_inset Quotes erd -\end_inset - - Eq. - (6)? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The symmetry of each row -\begin_inset Formula $r$ -\end_inset - - with center in -\begin_inset Formula $k=\frac{r}{2}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc9[01] -\end_layout - -\end_inset - -What is the value of -\begin_inset Formula $\binom{n}{n}$ -\end_inset - -? - (Consider all integers -\begin_inset Formula $n$ -\end_inset - -.) -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -For -\begin_inset Formula $n\geq0$ -\end_inset - -, - -\begin_inset Formula $\binom{n}{n}=\frac{n!}{n!1!}=1$ -\end_inset - -. - For -\begin_inset Formula $n<0$ -\end_inset - -, - by definition -\begin_inset Formula $\binom{n}{n}=0$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc10[M25] -\end_layout - -\end_inset - -If -\begin_inset Formula $p$ -\end_inset - - is prime, - show that: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \pmod p$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p}{k}\equiv0\pmod p$ -\end_inset - -, - for -\begin_inset Formula $1\leq k\leq p-1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p-1}{k}\equiv(-1)^{k}\pmod p$ -\end_inset - -, - for -\begin_inset Formula $0\leq k\leq p-1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p+1}{k}\equiv0\pmod p$ -\end_inset - -, - for -\begin_inset Formula $2\leq k\leq p-1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -(É. - Lucas, - 1877.) -\begin_inset Formula -\[ -\binom{n}{k}\equiv\binom{\lfloor n/p\rfloor}{\lfloor k/p\rfloor}\binom{n\bmod p}{k\bmod p}\pmod p. -\] - -\end_inset - - -\end_layout - -\begin_layout Enumerate -If the representations of -\begin_inset Formula $n$ -\end_inset - - and -\begin_inset Formula $k$ -\end_inset - - in the -\begin_inset Formula $p$ -\end_inset - --ary number system are -\begin_inset Formula -\begin{eqnarray*} -\begin{array}{rlc} -n & = & a_{r}p^{r}+\dots+a_{1}p+a_{0},\\ -k & = & b_{r}p^{r}+\dots+b_{1}p+b_{0}, -\end{array} & \text{then} & \binom{n}{k}\equiv\binom{a_{r}}{b_{r}}\cdots\binom{a_{1}}{b_{1}}\binom{a_{0}}{b_{0}}\pmod p. -\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We assume -\begin_inset Formula $n\in\mathbb{Z}$ -\end_inset - - and -\begin_inset Formula $k\in\mathbb{N}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Using part 5, -\begin_inset Formula -\[ -\binom{n}{p}\equiv\binom{\lfloor n/p\rfloor}{\lfloor p/p\rfloor}\binom{n\bmod p}{p\bmod p}=\binom{\lfloor n/p\rfloor}{1}\binom{n\bmod p}{0}=\left\lfloor \frac{n}{p}\right\rfloor \cdot1. -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -\begin_inset Note Comment -status open - -\begin_layout Plain Layout -Since we know -\begin_inset Formula $\binom{n}{p}=\frac{n(n-1)\cdots(n-p+1)}{1\cdot2\cdot\cdots\cdot p}\in\mathbb{Z}$ -\end_inset - - (because of the addition formula), - and since -\begin_inset Formula $p$ -\end_inset - - appears once in the denominator, - there must be a -\begin_inset Formula $k\in\{0,\dots,p-1\}$ -\end_inset - - such that -\begin_inset Formula $p\mid n-k$ -\end_inset - -, - and it obviously must be unique. - It's then easy to see that -\begin_inset Formula $\lfloor\frac{n}{p}\rfloor=\frac{n-k}{p}$ -\end_inset - -, - and so -\begin_inset Formula -\[ -\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \frac{n(n-1)\cdots(n-k+1)(n-k-1)\cdots(n-p+1)}{1\cdot2\cdots(p-1)}\pmod p. -\] - -\end_inset - -Let us call -\begin_inset Formula $b$ -\end_inset - - the numerator in the fraction of the above formula, - we just need to prove that -\begin_inset Formula $\frac{b}{(p-1)!}\equiv1\pmod p$ -\end_inset - -, - which by rule 1.2.4–C is equivalent to -\begin_inset Formula $b\equiv(p-1)!\bmod p!$ -\end_inset - -. - Since -\begin_inset Formula $b$ -\end_inset - - is a multiple of -\begin_inset Formula $(p-1)!$ -\end_inset - - (otherwise -\begin_inset Formula $\binom{n}{p}$ -\end_inset - - would be an integer), - -\begin_inset Formula $b\equiv0\equiv(p-1)!\bmod(p-1)!$ -\end_inset - -, - and since -\begin_inset Formula $\{(n-j)\bmod p\}_{0\leq j0. -\end{array}\right. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc39[M10] -\end_layout - -\end_inset - -What is the sum -\begin_inset Formula $\sum_{k}\stirla nk$ -\end_inset - - of the numbers in each row of Stirling's first triangle? - What is the sum of these numbers with alternating signs? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We can use Equation 44: -\end_layout - -\begin_layout Standard -\begin_inset Formula -\begin{multline*} -\sum_{k}\stirla nk=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk(-1)^{k}=(-1)^{n}(-1)^{\underline{n}}=\\ -=(-1)^{n}(-1)(-2)\cdots(-n)=n!, -\end{multline*} - -\end_inset - - -\begin_inset Formula -\[ -\sum_{k}\stirla nk(-1)^{k}=\sum_{k}\stirla nk(-1)^{-k}=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk1^{k}=(-1)^{n}1^{\underline{n}}=\delta_{n0}-\delta_{n1}. -\] - -\end_inset - -The first equation makes sense, - as it is the number of permutations of -\begin_inset Formula $n$ -\end_inset - - symbols irrespective of the number -\begin_inset Formula $k$ -\end_inset - - of cycles. - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc42[HM10] -\end_layout - -\end_inset - -Express the binomial coefficient -\begin_inset Formula $\binom{r}{k}$ -\end_inset - - in terms of the beta function defined above. - (This gives us a way to extend the definition to all real values of -\begin_inset Formula $k$ -\end_inset - -.) -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -For integers -\begin_inset Formula $r\geq0$ -\end_inset - - and -\begin_inset Formula $k\neq0$ -\end_inset - -, - -\begin_inset Formula -\[ -\binom{r}{k}=\frac{r!}{k!(r-k)!}=\frac{\Gamma(r+1)}{\Gamma(k+1)\Gamma(r-k)}=\frac{\Gamma(r+1)}{k\Gamma(k)\Gamma(r-k+1)}=(kB(k,r-k+1))^{-1}. -\] - -\end_inset - -We can extend this function to the points where it is not defined by taking limits. -\end_layout - -\begin_layout Standard -We are not required to evaluate the domain of this function, - but we have to see that it matches our definition for -\begin_inset Formula $r\in\mathbb{R}$ -\end_inset - - and -\begin_inset Formula $k\in\mathbb{Z}$ -\end_inset - -. - For -\begin_inset Formula $k\in\mathbb{N}$ -\end_inset - -, - we first see that -\begin_inset Formula -\begin{multline*} -\lim_{(x,y)\to(r,k)}\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}=\lim_{(x,y)\to(r,k)}\frac{\lim_{m}\frac{m^{x-y}m!}{(x-y+1)\cdots(x-y+m)}}{\lim_{m}\frac{m^{x-k}m!}{(x-k+1)\cdots(x-k+m)}}=\\ -=\lim_{(x,y)\to(r,k)}\lim_{m}m^{k-y}\prod_{i=1}^{m}\frac{x+m-y}{x+m-k}=1, -\end{multline*} - -\end_inset - -where I don't remember enough of my calculus lessons to know why the last step is correct but it has to do with exchanging limits. - With this, - if we successively apply the fact that -\begin_inset Formula $\Gamma(x+1)=x\Gamma(x)$ -\end_inset - -, - -\begin_inset Formula -\begin{multline*} -\lim_{(x,y)\to(r,k)}\frac{\Gamma(x+1)}{y\Gamma(y)\Gamma(x-y+1)}=\lim_{(x,y)\to(r,k)}\frac{x(x-1)\cdots(x-k+1)}{y\Gamma(y)\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}}=\\ -=\frac{r(r-1)\cdots(r-k+1)}{k!}. -\end{multline*} - -\end_inset - -If -\begin_inset Formula $k\in\mathbb{Z}^{-}$ -\end_inset - -, - for -\begin_inset Formula $r\notin\mathbb{Z}^{-}$ -\end_inset - -, - -\begin_inset Formula $\Gamma(r+1)$ -\end_inset - - is bounded in an open set around -\begin_inset Formula $(r,k)$ -\end_inset - -, - and since -\begin_inset Formula $\Gamma$ -\end_inset - - is continuous and has no zeros, - the denominator tends to infinity, - so the corresponding limit correctly evaluates to 0. - If -\begin_inset Formula $k,r\in\mathbb{Z}^{-}$ -\end_inset - - I can't find if the value is defined, - but if it is then its value is 0. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc44[HM20] -\end_layout - -\end_inset - -Using the generalized binomial coefficient suggested in exercise 42, - show that -\begin_inset Formula -\[ -\binom{r}{1/2}=2^{2r+1}\bigg/\binom{2r}{r}\pi. -\] - -\end_inset - - -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -From the definition, -\begin_inset Formula -\[ -\binom{r}{\frac{1}{2}}=\frac{1}{\frac{1}{2}B(\frac{1}{2},r+\frac{1}{2})}=\frac{2\Gamma(r+1)}{\Gamma(\frac{1}{2})\Gamma(r+\frac{1}{2})}. -\] - -\end_inset - -Now, - we know -\begin_inset Formula $\frac{\sqrt{\pi}}{2}=(\frac{1}{2})!=\frac{1}{2}\Gamma(\frac{1}{2})$ -\end_inset - -, - so -\begin_inset Formula $\Gamma(\frac{1}{2})=\sqrt{\pi}$ -\end_inset - - and -\begin_inset Formula -\[ -\binom{r}{\frac{1}{2}}=\frac{2r!}{\sqrt{\pi}(r-\frac{1}{2})(r-\frac{3}{2})\cdots(\frac{1}{2})\sqrt{\pi}}=\frac{2r!2^{r}}{\pi(2r-1)(2r-3)\cdots1}. -\] - -\end_inset - -We see that -\begin_inset Formula $(2r)!=((2r)(2r-2)\cdots2)((2r-1)(2r-3)\cdots1)$ -\end_inset - -. - We already have the second factor, - and the first one is precisely -\begin_inset Formula $2^{r}r!$ -\end_inset - -, - so we multiply both numerator and denominator by this factor to get that -\begin_inset Formula -\[ -\binom{r}{\frac{1}{2}}=\frac{2r!2^{r}2^{r}r!}{\pi(2r)!}=\frac{2^{2r+1}}{\binom{2r}{r}\pi}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc46[M21] -\end_layout - -\end_inset - -Using Stirling's approximation, - Eq. - 1.2.5–(7), - find an approximate value of -\begin_inset Formula $\binom{x+y}{y}$ -\end_inset - -, - assuming that both -\begin_inset Formula $x$ -\end_inset - - and -\begin_inset Formula $y$ -\end_inset - - are large. - In particular, - find the approximate size of -\begin_inset Formula $\binom{2n}{n}$ -\end_inset - - when -\begin_inset Formula $n$ -\end_inset - - is large. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -For large -\begin_inset Formula $x$ -\end_inset - - and -\begin_inset Formula $y$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\binom{x+y}{y}=\frac{(x+y)!}{x!y!}\approx\frac{\sqrt{2\pi(x+y)}\left(\frac{x+y}{\text{e}}\right)^{x+y}}{\sqrt{2\pi x}\sqrt{2\pi y}\left(\frac{x}{\text{e}}\right)^{x}\left(\frac{y}{\text{e}}\right)^{y}}=\sqrt{\frac{x+y}{2\pi xy}}\left(\frac{(x+y)^{x+y}}{x^{x}y^{y}}\right)=\\ -=\frac{(x+y)^{x+y+\nicefrac{1}{2}}}{\sqrt{2\pi}x^{x+\nicefrac{1}{2}}y^{y+\nicefrac{1}{2}}}=\sqrt{\frac{1}{2\pi}\left(\frac{1}{x}+\frac{1}{y}\right)}\left(1+\frac{y}{x}\right)^{x}\left(1+\frac{x}{y}\right)^{y}. -\end{multline*} - -\end_inset - -Then, - for large -\begin_inset Formula $n$ -\end_inset - -, -\begin_inset Formula -\[ -\binom{2n}{n}=\frac{(2n)^{2n+\nicefrac{1}{2}}}{\sqrt{2\pi}n^{2n+1}}=\frac{2^{2n}\sqrt{2}n^{2n}\sqrt{n}}{\sqrt{2\pi}n^{2n}n}=\frac{4^{n}}{\sqrt{\pi n}}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc48[M25] -\end_layout - -\end_inset - -Show that -\begin_inset Formula -\[ -\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\frac{n!}{x(x+1)\cdots(x+n)}=\frac{1}{x\binom{n+x}{n}}, -\] - -\end_inset - -if the denominators are not zero. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The second equality is obvious. - For the first one, - since the way the formula is written assumes -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -, - we can prove this by induction. - For -\begin_inset Formula $n=0$ -\end_inset - -, -\begin_inset Formula -\[ -\sum_{k\geq0}\binom{0}{k}\frac{(-1)^{k}}{k+x}=\frac{1}{x}=\frac{0!}{x}. -\] - -\end_inset - -For -\begin_inset Formula $n>0$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k-1}\frac{(-1)^{k}}{k+x}=\\ -=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k+1}}{k+1+x}=\frac{1}{x\binom{n-1+x}{n-1}}-\frac{1}{(x+1)\binom{n+x}{n-1}}=\\ -=\frac{(n-1)!}{x(x+1)\cdots(x+n-1)}-\frac{(n-1)!}{(x+1)(x+2)\cdots(x+n)}=\frac{(n-1)!((\cancel{x+}n)\cancel{-x})}{x(x+1)\cdots(x+n)}. -\end{multline*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc57[M22] -\end_layout - -\end_inset - -Show that the coefficient -\begin_inset Formula $a_{m}$ -\end_inset - - in Stirling's attempt at generalizing the factorial function, - Eq. - 1.2.5–(12), - is -\begin_inset Formula -\[ -\frac{(-1)^{m}}{m!}\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k. -\] - -\end_inset - -Also find -\begin_inset Formula $q$ -\end_inset - --nomial generalizations of the fundamental identities (17) and (21). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The sum in Stirling's attempt is -\begin_inset Formula -\begin{eqnarray*} -S_{n} & = & \sum_{k\geq0}a_{k+1}\prod_{j=0}^{k}(n-j)=\sum_{m\geq1}a_{m}\prod_{j=0}^{m-1}(n-j)\\ - & = & \sum_{m\geq1}\frac{(-1)^{m}}{m!}\left(\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k\right)\prod_{j=0}^{m-1}(n-j)\\ - & = & \sum_{k\geq1}\left(\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\right)\ln k. -\end{eqnarray*} - -\end_inset - -There are several things happening in the last line. - First, - note that both sums are bounded, - for -\begin_inset Formula $m$ -\end_inset - - must be at most -\begin_inset Formula $n$ -\end_inset - - because otherwise the product would contain a factor -\begin_inset Formula $n-n=0$ -\end_inset - -, - and -\begin_inset Formula $k$ -\end_inset - - must be lower than -\begin_inset Formula $m$ -\end_inset - -, - and therefore lower than -\begin_inset Formula $n$ -\end_inset - -, - because otherwise the factor -\begin_inset Formula $\binom{m-1}{k-1}$ -\end_inset - - would be 0. - This allows us to swap the sums and extract a factor that only depends on -\begin_inset Formula $k$ -\end_inset - -. - Moreover, -\begin_inset Formula -\[ -\frac{\prod_{j=0}^{m-1}(n-j)}{m!}=\frac{\prod_{j=1}^{m}(n-j+1)}{\prod_{j=1}^{m}j}=\binom{n}{m}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Let -\begin_inset Formula $A_{k}$ -\end_inset - - be the value of the inner sum for a given -\begin_inset Formula $k$ -\end_inset - -, - we know that -\begin_inset Formula $A_{k}=0$ -\end_inset - - for -\begin_inset Formula $k>n$ -\end_inset - -, - and if we prove that -\begin_inset Formula $A_{k}=1$ -\end_inset - - for -\begin_inset Formula $k\leq n$ -\end_inset - -, - we would have -\begin_inset Formula -\[ -S_{n}=\sum_{k=1}^{n}\ln k=\ln\prod_{k=1}^{n}k=\ln n! -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Now, - we have -\begin_inset Formula -\begin{align*} -A_{k} & =\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\\ - & =\sum_{m}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}-(-1)^{k}\binom{-1}{k-1} & (*)\\ - & =\sum_{m}(-1)^{n-m-k}\binom{n}{n-m}\binom{n-m-1}{k-1}+1 & (**)\\ - & =-\sum_{m}(-1)^{n-m}\binom{n}{m}\binom{k-1-n+m}{k-1}+1 & \text{Rules B, G}\\ - & =-\binom{k-1-n}{k-1-n}+1=1, & \text{Eq. (23)} -\end{align*} - -\end_inset - -where in -\begin_inset Formula $(*)$ -\end_inset - - we expand the domain of -\begin_inset Formula $m$ -\end_inset - - to all integers and subtract the case when -\begin_inset Formula $m=0$ -\end_inset - - to compensate for that (this is the only nonzero term that wasn't considered already) and in -\begin_inset Formula $(**)$ -\end_inset - - we change -\begin_inset Formula $m$ -\end_inset - - to -\begin_inset Formula $n-m$ -\end_inset - -. -\end_layout - -\begin_layout Standard -For the second part of the exercise, - we start by writing the identities (17) and (21) in -\begin_inset Formula $q$ -\end_inset - --nomial notation. - For (17), - this would be -\begin_inset Formula -\begin{eqnarray*} -\binom{r}{k,r-k}=(-1)^{k}\binom{k-r-1}{k,-r-1}, & \text{ or } & \binom{a+b}{a,b}=(-1)^{a}\binom{-b-1}{a,-(a+b)-1}. -\end{eqnarray*} - -\end_inset - -That is, - this allows us to change the sum on top to something resembling just one of the numbers that were on the bottom part. - To generalize this, -\begin_inset Formula -\begin{align*} -\binom{k_{1}+\dots+k_{m}}{k_{1},\dots,k_{m}} & =\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m}}{k_{1}+\dots+k_{m-1}}\\ - & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m-1}}{k_{1}+\dots+k_{m-2}}\binom{-k_{m}-1}{k_{1}+\dots+k_{m-1}}\\ - & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{-k_{m}-1}{k_{1},\dots,k_{m-1},-(k_{1}+\dots+k_{m})-1}. -\end{align*} - -\end_inset - -We are abusing notation here, - since the book only defines multinomial coefficients for -\begin_inset Formula $k_{i}\geq0$ -\end_inset - -, - but we can define them for any -\begin_inset Formula $k_{i}\in\mathbb{Z}$ -\end_inset - - by using the property that relates them to binomial coefficients, - at the cost of symmetry with respect to the order of the -\begin_inset Formula $k_{i}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -For (21), - this would be -\begin_inset Formula -\[ -\sum_{k}\binom{r}{k,r-k}\binom{s}{n-k,s-n+k}=\binom{r+s}{n,r+s-n}. -\] - -\end_inset - -That is, - in this case we would add up all the numbers on each component. - This clearly holds if we place -\begin_inset Formula $k,r-k$ -\end_inset - - and -\begin_inset Formula $n-k,s-n+k$ -\end_inset - - as the two last components of the multinomial coefficient. - There must be a better (less silly) generalization but I've already spent way too much time in this exercise. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc60[M23] -\end_layout - -\end_inset - -We have seen that -\begin_inset Formula $\binom{n}{k}$ -\end_inset - - is the number of combinations of -\begin_inset Formula $n$ -\end_inset - - things, - -\begin_inset Formula $k$ -\end_inset - - at a time, - namely the number of ways to choose -\begin_inset Formula $k$ -\end_inset - - different things out of a set of -\begin_inset Formula $n$ -\end_inset - -. - The -\emph on -combinations with repetitions -\emph default - are similar to ordinary combinations, - except that we may choose each object any number of times. - Thus, - the list (1) would be extended to include also -\begin_inset Formula $aaa$ -\end_inset - -, - -\begin_inset Formula $aab$ -\end_inset - -, - -\begin_inset Formula $aac$ -\end_inset - -, - -\begin_inset Formula $aad$ -\end_inset - -, - -\begin_inset Formula $aae$ -\end_inset - -, - -\begin_inset Formula $abb$ -\end_inset - -, - etc., - if we were considering combinations with repetition. - How many -\begin_inset Formula $k$ -\end_inset - --combinations of -\begin_inset Formula $n$ -\end_inset - - objects are there, - if repetition is allowed? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We can draw a bijection between -\begin_inset Formula $k$ -\end_inset - --combinations of -\begin_inset Formula $\{1,\dots,n\}$ -\end_inset - - with repetition and -\begin_inset Formula $k$ -\end_inset - --combinations of -\begin_inset Formula $\{1,\dots,n+k-1\}$ -\end_inset - - without repetition by the following assignment: -\begin_inset Formula -\begin{eqnarray*} -1\leq a_{1}\leq a_{2}\leq\dots\leq a_{k}\leq n & \mapsto & 1\leq a_{1}