From 8bbe7955e154bac1eeda33db9530b016725f7fdd Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Sun, 1 Dec 2024 14:37:50 +0100 Subject: Convert into git repository --- 1.2.6.lyx | 3599 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3599 insertions(+) create mode 100644 1.2.6.lyx (limited to '1.2.6.lyx') diff --git a/1.2.6.lyx b/1.2.6.lyx new file mode 100644 index 0000000..047325d --- /dev/null +++ b/1.2.6.lyx @@ -0,0 +1,3599 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\usepackage{amsmath} +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\stirla}[2]{\genfrac[]{0pt}{}{#1}{#2}} +{\begin{bmatrix}{\textstyle #1}\\ +{\textstyle #2} +\end{bmatrix}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\stirlb}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} +{\begin{Bmatrix}{\textstyle #1}\\ +{\textstyle #2} +\end{Bmatrix}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[00] +\end_layout + +\end_inset + +How many combinations of +\begin_inset Formula $n$ +\end_inset + + things taken +\begin_inset Formula $n-1$ +\end_inset + + at a time are possible? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\binom{n}{n-1}=\frac{n!}{1!(n-1)!}=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[00] +\end_layout + +\end_inset + +What is +\begin_inset Formula $\binom{0}{0}$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\binom{0}{0}=\frac{1!}{1!1!}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc3[00] +\end_layout + +\end_inset + +How many bridge hands (13 cards out of a 52-card deck) are possible? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\binom{52}{13}=635013559600$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[10] +\end_layout + +\end_inset + +Give the answer to exercise 3 as a product of prime numbers. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula $\binom{52}{13}=\frac{52!}{13!39!}$ +\end_inset + +. + Using Equation 1.2.5.8: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +52! & =2^{49}3^{23}5^{12}7^{8}11^{4}13^{4}17^{3}19^{2}23^{2}\cdot29\cdot31\cdot37\cdot41\cdot43\cdot47,\\ +39! & =2^{35}3^{18}5^{8}7^{5}11^{3}13^{3}17^{2}19^{2}\cdot23\cdot29\cdot31\cdot37\\ +13! & =2^{10}3^{5}5^{2}\cdot7\cdot11\cdot13\\ +\hline \binom{52}{13} & =2^{4}5^{2}7^{2}\cdot17\cdot23\cdot41\cdot43\cdot47. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[05] +\end_layout + +\end_inset + +Use Pascal's triangle to explain the fact that +\begin_inset Formula $11^{4}=14641$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $11^{4}=(10+1)^{4}=\binom{4}{0}10^{4}1^{0}+\binom{4}{1}10^{3}1^{1}+\binom{4}{2}10^{2}1^{2}+\binom{4}{3}10^{1}1^{3}+\binom{4}{4}10^{0}1^{4}=14641$ +\end_inset + +. + The pattern works for the number 11 in any given base until the number 10 or higher appears, + which in this case happens in the next row. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[10] +\end_layout + +\end_inset + +Pascal's triangle (Table 1) can be extended in all directions by use of the addition formula, + Eq. + (9). + Find the three rows that go on +\emph on +top +\emph default + of Table 1 (i.e. + for +\begin_inset Formula $r=-1$ +\end_inset + +, + +\begin_inset Formula $-2$ +\end_inset + +, + and +\begin_inset Formula $-3$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The table is based on the properties that +\begin_inset Formula $\binom{r}{k}=\binom{r-1}{k}+\binom{r-1}{k-1}$ +\end_inset + + and that +\begin_inset Formula $\binom{r}{k}=0$ +\end_inset + + for +\begin_inset Formula $k<0$ +\end_inset + +. + This implies that +\begin_inset Formula $\binom{r}{0}=1$ +\end_inset + + for any +\begin_inset Formula $r\in\mathbb{Z}$ +\end_inset + + (really for any +\begin_inset Formula $r\in\mathbb{R}$ +\end_inset + +) and that +\begin_inset Formula $\binom{r-1}{k}=\binom{r}{k}-\binom{r-1}{k-1}$ +\end_inset + + (the one below in the table minus the one on the left). +\end_layout + +\begin_layout Standard +\align center +\begin_inset Tabular + + + + + + + + + + + + + + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $r$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{0}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{1}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{2}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{3}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{4}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{5}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{6}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{7}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{8}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{9}$ +\end_inset + + +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-3$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-3$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $6$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-10$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $15$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-21$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $28$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-36$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $45$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-55$ +\end_inset + + +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-2$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-2$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $3$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-4$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $5$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-6$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $7$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-8$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $9$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-10$ +\end_inset + + +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset + + + + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc8[00] +\end_layout + +\end_inset + +What property of Pascal's triangle is reflected in the +\begin_inset Quotes eld +\end_inset + +symmetry condition, +\begin_inset Quotes erd +\end_inset + + Eq. + (6)? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The symmetry of each row +\begin_inset Formula $r$ +\end_inset + + with center in +\begin_inset Formula $k=\frac{r}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc9[01] +\end_layout + +\end_inset + +What is the value of +\begin_inset Formula $\binom{n}{n}$ +\end_inset + +? + (Consider all integers +\begin_inset Formula $n$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For +\begin_inset Formula $n\geq0$ +\end_inset + +, + +\begin_inset Formula $\binom{n}{n}=\frac{n!}{n!1!}=1$ +\end_inset + +. + For +\begin_inset Formula $n<0$ +\end_inset + +, + by definition +\begin_inset Formula $\binom{n}{n}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[M25] +\end_layout + +\end_inset + +If +\begin_inset Formula $p$ +\end_inset + + is prime, + show that: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \pmod p$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p}{k}\equiv0\pmod p$ +\end_inset + +, + for +\begin_inset Formula $1\leq k\leq p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p-1}{k}\equiv(-1)^{k}\pmod p$ +\end_inset + +, + for +\begin_inset Formula $0\leq k\leq p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p+1}{k}\equiv0\pmod p$ +\end_inset + +, + for +\begin_inset Formula $2\leq k\leq p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +(É. + Lucas, + 1877.) +\begin_inset Formula +\[ +\binom{n}{k}\equiv\binom{\lfloor n/p\rfloor}{\lfloor k/p\rfloor}\binom{n\bmod p}{k\bmod p}\pmod p. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +If the representations of +\begin_inset Formula $n$ +\end_inset + + and +\begin_inset Formula $k$ +\end_inset + + in the +\begin_inset Formula $p$ +\end_inset + +-ary number system are +\begin_inset Formula +\begin{eqnarray*} +\begin{array}{rlc} +n & = & a_{r}p^{r}+\dots+a_{1}p+a_{0},\\ +k & = & b_{r}p^{r}+\dots+b_{1}p+b_{0}, +\end{array} & \text{then} & \binom{n}{k}\equiv\binom{a_{r}}{b_{r}}\cdots\binom{a_{1}}{b_{1}}\binom{a_{0}}{b_{0}}\pmod p. +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We assume +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + + and +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Using part 5, +\begin_inset Formula +\[ +\binom{n}{p}\equiv\binom{\lfloor n/p\rfloor}{\lfloor p/p\rfloor}\binom{n\bmod p}{p\bmod p}=\binom{\lfloor n/p\rfloor}{1}\binom{n\bmod p}{0}=\left\lfloor \frac{n}{p}\right\rfloor \cdot1. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Since we know +\begin_inset Formula $\binom{n}{p}=\frac{n(n-1)\cdots(n-p+1)}{1\cdot2\cdot\cdots\cdot p}\in\mathbb{Z}$ +\end_inset + + (because of the addition formula), + and since +\begin_inset Formula $p$ +\end_inset + + appears once in the denominator, + there must be a +\begin_inset Formula $k\in\{0,\dots,p-1\}$ +\end_inset + + such that +\begin_inset Formula $p\mid n-k$ +\end_inset + +, + and it obviously must be unique. + It's then easy to see that +\begin_inset Formula $\lfloor\frac{n}{p}\rfloor=\frac{n-k}{p}$ +\end_inset + +, + and so +\begin_inset Formula +\[ +\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \frac{n(n-1)\cdots(n-k+1)(n-k-1)\cdots(n-p+1)}{1\cdot2\cdots(p-1)}\pmod p. +\] + +\end_inset + +Let us call +\begin_inset Formula $b$ +\end_inset + + the numerator in the fraction of the above formula, + we just need to prove that +\begin_inset Formula $\frac{b}{(p-1)!}\equiv1\pmod p$ +\end_inset + +, + which by rule 1.2.4–C is equivalent to +\begin_inset Formula $b\equiv(p-1)!\bmod p!$ +\end_inset + +. + Since +\begin_inset Formula $b$ +\end_inset + + is a multiple of +\begin_inset Formula $(p-1)!$ +\end_inset + + (otherwise +\begin_inset Formula $\binom{n}{p}$ +\end_inset + + would be an integer), + +\begin_inset Formula $b\equiv0\equiv(p-1)!\bmod(p-1)!$ +\end_inset + +, + and since +\begin_inset Formula $\{(n-j)\bmod p\}_{0\leq j0. +\end{array}\right. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc39[M10] +\end_layout + +\end_inset + +What is the sum +\begin_inset Formula $\sum_{k}\stirla nk$ +\end_inset + + of the numbers in each row of Stirling's first triangle? + What is the sum of these numbers with alternating signs? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We can use Equation 44: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{multline*} +\sum_{k}\stirla nk=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk(-1)^{k}=(-1)^{n}(-1)^{\underline{n}}=\\ +=(-1)^{n}(-1)(-2)\cdots(-n)=n!, +\end{multline*} + +\end_inset + + +\begin_inset Formula +\[ +\sum_{k}\stirla nk(-1)^{k}=\sum_{k}\stirla nk(-1)^{-k}=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk1^{k}=(-1)^{n}1^{\underline{n}}=\delta_{n0}-\delta_{n1}. +\] + +\end_inset + +The first equation makes sense, + as it is the number of permutations of +\begin_inset Formula $n$ +\end_inset + + symbols irrespective of the number +\begin_inset Formula $k$ +\end_inset + + of cycles. + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc42[HM10] +\end_layout + +\end_inset + +Express the binomial coefficient +\begin_inset Formula $\binom{r}{k}$ +\end_inset + + in terms of the beta function defined above. + (This gives us a way to extend the definition to all real values of +\begin_inset Formula $k$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For integers +\begin_inset Formula $r\geq0$ +\end_inset + + and +\begin_inset Formula $k\neq0$ +\end_inset + +, + +\begin_inset Formula +\[ +\binom{r}{k}=\frac{r!}{k!(r-k)!}=\frac{\Gamma(r+1)}{\Gamma(k+1)\Gamma(r-k)}=\frac{\Gamma(r+1)}{k\Gamma(k)\Gamma(r-k+1)}=(kB(k,r-k+1))^{-1}. +\] + +\end_inset + +We can extend this function to the points where it is not defined by taking limits. +\end_layout + +\begin_layout Standard +We are not required to evaluate the domain of this function, + but we have to see that it matches our definition for +\begin_inset Formula $r\in\mathbb{R}$ +\end_inset + + and +\begin_inset Formula $k\in\mathbb{Z}$ +\end_inset + +. + For +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, + we first see that +\begin_inset Formula +\begin{multline*} +\lim_{(x,y)\to(r,k)}\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}=\lim_{(x,y)\to(r,k)}\frac{\lim_{m}\frac{m^{x-y}m!}{(x-y+1)\cdots(x-y+m)}}{\lim_{m}\frac{m^{x-k}m!}{(x-k+1)\cdots(x-k+m)}}=\\ +=\lim_{(x,y)\to(r,k)}\lim_{m}m^{k-y}\prod_{i=1}^{m}\frac{x+m-y}{x+m-k}=1, +\end{multline*} + +\end_inset + +where I don't remember enough of my calculus lessons to know why the last step is correct but it has to do with exchanging limits. + With this, + if we successively apply the fact that +\begin_inset Formula $\Gamma(x+1)=x\Gamma(x)$ +\end_inset + +, + +\begin_inset Formula +\begin{multline*} +\lim_{(x,y)\to(r,k)}\frac{\Gamma(x+1)}{y\Gamma(y)\Gamma(x-y+1)}=\lim_{(x,y)\to(r,k)}\frac{x(x-1)\cdots(x-k+1)}{y\Gamma(y)\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}}=\\ +=\frac{r(r-1)\cdots(r-k+1)}{k!}. +\end{multline*} + +\end_inset + +If +\begin_inset Formula $k\in\mathbb{Z}^{-}$ +\end_inset + +, + for +\begin_inset Formula $r\notin\mathbb{Z}^{-}$ +\end_inset + +, + +\begin_inset Formula $\Gamma(r+1)$ +\end_inset + + is bounded in an open set around +\begin_inset Formula $(r,k)$ +\end_inset + +, + and since +\begin_inset Formula $\Gamma$ +\end_inset + + is continuous and has no zeros, + the denominator tends to infinity, + so the corresponding limit correctly evaluates to 0. + If +\begin_inset Formula $k,r\in\mathbb{Z}^{-}$ +\end_inset + + I can't find if the value is defined, + but if it is then its value is 0. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc44[HM20] +\end_layout + +\end_inset + +Using the generalized binomial coefficient suggested in exercise 42, + show that +\begin_inset Formula +\[ +\binom{r}{1/2}=2^{2r+1}\bigg/\binom{2r}{r}\pi. +\] + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +From the definition, +\begin_inset Formula +\[ +\binom{r}{\frac{1}{2}}=\frac{1}{\frac{1}{2}B(\frac{1}{2},r+\frac{1}{2})}=\frac{2\Gamma(r+1)}{\Gamma(\frac{1}{2})\Gamma(r+\frac{1}{2})}. +\] + +\end_inset + +Now, + we know +\begin_inset Formula $\frac{\sqrt{\pi}}{2}=(\frac{1}{2})!=\frac{1}{2}\Gamma(\frac{1}{2})$ +\end_inset + +, + so +\begin_inset Formula $\Gamma(\frac{1}{2})=\sqrt{\pi}$ +\end_inset + + and +\begin_inset Formula +\[ +\binom{r}{\frac{1}{2}}=\frac{2r!}{\sqrt{\pi}(r-\frac{1}{2})(r-\frac{3}{2})\cdots(\frac{1}{2})\sqrt{\pi}}=\frac{2r!2^{r}}{\pi(2r-1)(2r-3)\cdots1}. +\] + +\end_inset + +We see that +\begin_inset Formula $(2r)!=((2r)(2r-2)\cdots2)((2r-1)(2r-3)\cdots1)$ +\end_inset + +. + We already have the second factor, + and the first one is precisely +\begin_inset Formula $2^{r}r!$ +\end_inset + +, + so we multiply both numerator and denominator by this factor to get that +\begin_inset Formula +\[ +\binom{r}{\frac{1}{2}}=\frac{2r!2^{r}2^{r}r!}{\pi(2r)!}=\frac{2^{2r+1}}{\binom{2r}{r}\pi}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc46[M21] +\end_layout + +\end_inset + +Using Stirling's approximation, + Eq. + 1.2.5–(7), + find an approximate value of +\begin_inset Formula $\binom{x+y}{y}$ +\end_inset + +, + assuming that both +\begin_inset Formula $x$ +\end_inset + + and +\begin_inset Formula $y$ +\end_inset + + are large. + In particular, + find the approximate size of +\begin_inset Formula $\binom{2n}{n}$ +\end_inset + + when +\begin_inset Formula $n$ +\end_inset + + is large. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For large +\begin_inset Formula $x$ +\end_inset + + and +\begin_inset Formula $y$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\binom{x+y}{y}=\frac{(x+y)!}{x!y!}\approx\frac{\sqrt{2\pi(x+y)}\left(\frac{x+y}{\text{e}}\right)^{x+y}}{\sqrt{2\pi x}\sqrt{2\pi y}\left(\frac{x}{\text{e}}\right)^{x}\left(\frac{y}{\text{e}}\right)^{y}}=\sqrt{\frac{x+y}{2\pi xy}}\left(\frac{(x+y)^{x+y}}{x^{x}y^{y}}\right)=\\ +=\frac{(x+y)^{x+y+\nicefrac{1}{2}}}{\sqrt{2\pi}x^{x+\nicefrac{1}{2}}y^{y+\nicefrac{1}{2}}}=\sqrt{\frac{1}{2\pi}\left(\frac{1}{x}+\frac{1}{y}\right)}\left(1+\frac{y}{x}\right)^{x}\left(1+\frac{x}{y}\right)^{y}. +\end{multline*} + +\end_inset + +Then, + for large +\begin_inset Formula $n$ +\end_inset + +, +\begin_inset Formula +\[ +\binom{2n}{n}=\frac{(2n)^{2n+\nicefrac{1}{2}}}{\sqrt{2\pi}n^{2n+1}}=\frac{2^{2n}\sqrt{2}n^{2n}\sqrt{n}}{\sqrt{2\pi}n^{2n}n}=\frac{4^{n}}{\sqrt{\pi n}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc48[M25] +\end_layout + +\end_inset + +Show that +\begin_inset Formula +\[ +\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\frac{n!}{x(x+1)\cdots(x+n)}=\frac{1}{x\binom{n+x}{n}}, +\] + +\end_inset + +if the denominators are not zero. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The second equality is obvious. + For the first one, + since the way the formula is written assumes +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, + we can prove this by induction. + For +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{k\geq0}\binom{0}{k}\frac{(-1)^{k}}{k+x}=\frac{1}{x}=\frac{0!}{x}. +\] + +\end_inset + +For +\begin_inset Formula $n>0$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k-1}\frac{(-1)^{k}}{k+x}=\\ +=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k+1}}{k+1+x}=\frac{1}{x\binom{n-1+x}{n-1}}-\frac{1}{(x+1)\binom{n+x}{n-1}}=\\ +=\frac{(n-1)!}{x(x+1)\cdots(x+n-1)}-\frac{(n-1)!}{(x+1)(x+2)\cdots(x+n)}=\frac{(n-1)!((\cancel{x+}n)\cancel{-x})}{x(x+1)\cdots(x+n)}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc57[M22] +\end_layout + +\end_inset + +Show that the coefficient +\begin_inset Formula $a_{m}$ +\end_inset + + in Stirling's attempt at generalizing the factorial function, + Eq. + 1.2.5–(12), + is +\begin_inset Formula +\[ +\frac{(-1)^{m}}{m!}\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k. +\] + +\end_inset + +Also find +\begin_inset Formula $q$ +\end_inset + +-nomial generalizations of the fundamental identities (17) and (21). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The sum in Stirling's attempt is +\begin_inset Formula +\begin{eqnarray*} +S_{n} & = & \sum_{k\geq0}a_{k+1}\prod_{j=0}^{k}(n-j)=\sum_{m\geq1}a_{m}\prod_{j=0}^{m-1}(n-j)\\ + & = & \sum_{m\geq1}\frac{(-1)^{m}}{m!}\left(\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k\right)\prod_{j=0}^{m-1}(n-j)\\ + & = & \sum_{k\geq1}\left(\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\right)\ln k. +\end{eqnarray*} + +\end_inset + +There are several things happening in the last line. + First, + note that both sums are bounded, + for +\begin_inset Formula $m$ +\end_inset + + must be at most +\begin_inset Formula $n$ +\end_inset + + because otherwise the product would contain a factor +\begin_inset Formula $n-n=0$ +\end_inset + +, + and +\begin_inset Formula $k$ +\end_inset + + must be lower than +\begin_inset Formula $m$ +\end_inset + +, + and therefore lower than +\begin_inset Formula $n$ +\end_inset + +, + because otherwise the factor +\begin_inset Formula $\binom{m-1}{k-1}$ +\end_inset + + would be 0. + This allows us to swap the sums and extract a factor that only depends on +\begin_inset Formula $k$ +\end_inset + +. + Moreover, +\begin_inset Formula +\[ +\frac{\prod_{j=0}^{m-1}(n-j)}{m!}=\frac{\prod_{j=1}^{m}(n-j+1)}{\prod_{j=1}^{m}j}=\binom{n}{m}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Let +\begin_inset Formula $A_{k}$ +\end_inset + + be the value of the inner sum for a given +\begin_inset Formula $k$ +\end_inset + +, + we know that +\begin_inset Formula $A_{k}=0$ +\end_inset + + for +\begin_inset Formula $k>n$ +\end_inset + +, + and if we prove that +\begin_inset Formula $A_{k}=1$ +\end_inset + + for +\begin_inset Formula $k\leq n$ +\end_inset + +, + we would have +\begin_inset Formula +\[ +S_{n}=\sum_{k=1}^{n}\ln k=\ln\prod_{k=1}^{n}k=\ln n! +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Now, + we have +\begin_inset Formula +\begin{align*} +A_{k} & =\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\\ + & =\sum_{m}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}-(-1)^{k}\binom{-1}{k-1} & (*)\\ + & =\sum_{m}(-1)^{n-m-k}\binom{n}{n-m}\binom{n-m-1}{k-1}+1 & (**)\\ + & =-\sum_{m}(-1)^{n-m}\binom{n}{m}\binom{k-1-n+m}{k-1}+1 & \text{Rules B, G}\\ + & =-\binom{k-1-n}{k-1-n}+1=1, & \text{Eq. (23)} +\end{align*} + +\end_inset + +where in +\begin_inset Formula $(*)$ +\end_inset + + we expand the domain of +\begin_inset Formula $m$ +\end_inset + + to all integers and subtract the case when +\begin_inset Formula $m=0$ +\end_inset + + to compensate for that (this is the only nonzero term that wasn't considered already) and in +\begin_inset Formula $(**)$ +\end_inset + + we change +\begin_inset Formula $m$ +\end_inset + + to +\begin_inset Formula $n-m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +For the second part of the exercise, + we start by writing the identities (17) and (21) in +\begin_inset Formula $q$ +\end_inset + +-nomial notation. + For (17), + this would be +\begin_inset Formula +\begin{eqnarray*} +\binom{r}{k,r-k}=(-1)^{k}\binom{k-r-1}{k,-r-1}, & \text{ or } & \binom{a+b}{a,b}=(-1)^{a}\binom{-b-1}{a,-(a+b)-1}. +\end{eqnarray*} + +\end_inset + +That is, + this allows us to change the sum on top to something resembling just one of the numbers that were on the bottom part. + To generalize this, +\begin_inset Formula +\begin{align*} +\binom{k_{1}+\dots+k_{m}}{k_{1},\dots,k_{m}} & =\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m}}{k_{1}+\dots+k_{m-1}}\\ + & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m-1}}{k_{1}+\dots+k_{m-2}}\binom{-k_{m}-1}{k_{1}+\dots+k_{m-1}}\\ + & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{-k_{m}-1}{k_{1},\dots,k_{m-1},-(k_{1}+\dots+k_{m})-1}. +\end{align*} + +\end_inset + +We are abusing notation here, + since the book only defines multinomial coefficients for +\begin_inset Formula $k_{i}\geq0$ +\end_inset + +, + but we can define them for any +\begin_inset Formula $k_{i}\in\mathbb{Z}$ +\end_inset + + by using the property that relates them to binomial coefficients, + at the cost of symmetry with respect to the order of the +\begin_inset Formula $k_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +For (21), + this would be +\begin_inset Formula +\[ +\sum_{k}\binom{r}{k,r-k}\binom{s}{n-k,s-n+k}=\binom{r+s}{n,r+s-n}. +\] + +\end_inset + +That is, + in this case we would add up all the numbers on each component. + This clearly holds if we place +\begin_inset Formula $k,r-k$ +\end_inset + + and +\begin_inset Formula $n-k,s-n+k$ +\end_inset + + as the two last components of the multinomial coefficient. + There must be a better (less silly) generalization but I've already spent way too much time in this exercise. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc60[M23] +\end_layout + +\end_inset + +We have seen that +\begin_inset Formula $\binom{n}{k}$ +\end_inset + + is the number of combinations of +\begin_inset Formula $n$ +\end_inset + + things, + +\begin_inset Formula $k$ +\end_inset + + at a time, + namely the number of ways to choose +\begin_inset Formula $k$ +\end_inset + + different things out of a set of +\begin_inset Formula $n$ +\end_inset + +. + The +\emph on +combinations with repetitions +\emph default + are similar to ordinary combinations, + except that we may choose each object any number of times. + Thus, + the list (1) would be extended to include also +\begin_inset Formula $aaa$ +\end_inset + +, + +\begin_inset Formula $aab$ +\end_inset + +, + +\begin_inset Formula $aac$ +\end_inset + +, + +\begin_inset Formula $aad$ +\end_inset + +, + +\begin_inset Formula $aae$ +\end_inset + +, + +\begin_inset Formula $abb$ +\end_inset + +, + etc., + if we were considering combinations with repetition. + How many +\begin_inset Formula $k$ +\end_inset + +-combinations of +\begin_inset Formula $n$ +\end_inset + + objects are there, + if repetition is allowed? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We can draw a bijection between +\begin_inset Formula $k$ +\end_inset + +-combinations of +\begin_inset Formula $\{1,\dots,n\}$ +\end_inset + + with repetition and +\begin_inset Formula $k$ +\end_inset + +-combinations of +\begin_inset Formula $\{1,\dots,n+k-1\}$ +\end_inset + + without repetition by the following assignment: +\begin_inset Formula +\begin{eqnarray*} +1\leq a_{1}\leq a_{2}\leq\dots\leq a_{k}\leq n & \mapsto & 1\leq a_{1}