From 6b9ef86f54aa3acab4c55118382e6a98b006b301 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Sun, 1 Dec 2024 20:11:03 +0100 Subject: Exercise 2.3.4.4--21 --- 2.3.4.4.lyx | 92 ++++++++++++++++--------------------------------------------- 1 file changed, 23 insertions(+), 69 deletions(-) (limited to '2.3.4.4.lyx') diff --git a/2.3.4.4.lyx b/2.3.4.4.lyx index 4f62d33..0172abf 100644 --- a/2.3.4.4.lyx +++ b/2.3.4.4.lyx @@ -91,23 +91,6 @@ \begin_body -\begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO 5, - 10, - 14, - 21 (3pp., - 1:08) -\end_layout - -\end_inset - - -\end_layout - \begin_layout Standard \begin_inset ERT status open @@ -722,74 +705,45 @@ answer \end_inset These are precisely the 0-2-trees in exercise 2.3–20. - We know 0-2-trees always have an odd number of nodes. - Let -\begin_inset Formula $b_{n}$ -\end_inset - - be the number of such trees with -\begin_inset Formula $2n+1$ -\end_inset - - nodes, - then -\begin_inset Formula $b_{0}=1$ + We know 0-2-trees always have an odd number of nodes, + say +\begin_inset Formula $2m+1$ \end_inset - and, - for -\begin_inset Formula $n>0$ + nodes. + By the construction in the text, + these trees correspond to sequences of +\begin_inset Formula $2m$ \end_inset -, -\begin_inset Formula -\[ -b_{n}=\sum_{m=0}^{n-1}b_{m}b_{n-m-1}, -\] - + nodes where each node that appears does so exactly twice. + There are +\begin_inset Formula $\binom{2m+1}{m}$ \end_inset -as the root would have -\begin_inset Formula $2m+1$ + ways to choose which nodes +\emph on +do +\emph default + appear in the sequence, + and +\begin_inset Formula $\frac{(2m)!}{2^{m}}$ \end_inset - nodes in the left side and -\begin_inset Formula $2(n-m-1)+1=2n-2m-1$ + ways to arranging them (we can think of arranging +\begin_inset Formula $2m$ \end_inset - nodes in the right side. - Then, + elements and then discarding the relative order of equal pairs of elements). + This gives us \begin_inset Formula \[ -B(z)\coloneqq\sum_{n\geq0}b_{n}z^{n}=1+\sum_{n\geq1}\sum_{m=0}^{n-1}b_{m}b_{n-m-1}z^{n}=1+z\sum_{m,k\geq0}b_{m}b_{k}z^{m+k}=1+zB(z)^{2}, +\binom{2m+1}{m}(2m)!\Bigg/2^{m} \] \end_inset -so -\begin_inset Formula $zB(z)^{2}-B(z)+1=0$ -\end_inset - - and -\begin_inset Formula $B(z)=\frac{1-\sqrt{1-4z}}{2z}$ -\end_inset - -, - where we take the negative sign as it is the one where the solution converges at -\begin_inset Formula $z=0$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO -\end_layout - -\end_inset - - +labeled oriented 0-2-trees. \end_layout \end_body -- cgit v1.2.3