From 8bbe7955e154bac1eeda33db9530b016725f7fdd Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Sun, 1 Dec 2024 14:37:50 +0100 Subject: Convert into git repository --- 2.3.4.4.lyx | 796 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 796 insertions(+) create mode 100644 2.3.4.4.lyx (limited to '2.3.4.4.lyx') diff --git a/2.3.4.4.lyx b/2.3.4.4.lyx new file mode 100644 index 0000000..4f62d33 --- /dev/null +++ b/2.3.4.4.lyx @@ -0,0 +1,796 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO 5, + 10, + 14, + 21 (3pp., + 1:08) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[M25] +\end_layout + +\end_inset + +(A. + Cayley.) Let +\begin_inset Formula $c_{n}$ +\end_inset + + be the number of (unlabeled) oriented trees having +\begin_inset Formula $n$ +\end_inset + + leaves (namely, + vertices with in-degree zero) and having at least two subtrees at every other vertex. + Thus +\begin_inset Formula $c_{3}=2$ +\end_inset + +, + by virtue of the two trees +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{center} +\end_layout + +\begin_layout Plain Layout + + +\backslash +def +\backslash +dot#1{node(#1){ +\backslash +textbullet}} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw (0,1) +\backslash +dot R (-.5,0) +\backslash +dot A (0,0) +\backslash +dot B (.5,0) +\backslash +dot C +\end_layout + +\begin_layout Plain Layout + + (0,-1) node{}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (A) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (B) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (C) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +hfil +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw (0,1) +\backslash +dot R (-.5,0) +\backslash +dot A (.5,0) +\backslash +dot B +\end_layout + +\begin_layout Plain Layout + + (-1,-1) +\backslash +dot C (0,-1) +\backslash +dot D; +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (C) -> (A); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (D) -> (A); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (B) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (A) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{center} +\end_layout + +\end_inset + +Find a formula analogous to (3) for the generating function +\begin_inset Formula +\[ +C(z)=\sum_{n}c_{n}z^{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Every tree has at least one leaf, + so +\begin_inset Formula $c_{0}=0$ +\end_inset + +. + This includes subtrees, + so +\begin_inset Formula $c_{1}=1$ +\end_inset + + as, + if the root weren't also a leaf, + it would have at least two children and therefore two trees. + For +\begin_inset Formula $n>1$ +\end_inset + +, + the root has a tree and various subtrees. + Let +\begin_inset Formula $j_{k}$ +\end_inset + + be the number of subtrees with +\begin_inset Formula $k$ +\end_inset + + leaves, + +\begin_inset Formula $1\leq k0$ +\end_inset + +, +\begin_inset Formula +\[ +b_{n}=\sum_{m=0}^{n-1}b_{m}b_{n-m-1}, +\] + +\end_inset + +as the root would have +\begin_inset Formula $2m+1$ +\end_inset + + nodes in the left side and +\begin_inset Formula $2(n-m-1)+1=2n-2m-1$ +\end_inset + + nodes in the right side. + Then, +\begin_inset Formula +\[ +B(z)\coloneqq\sum_{n\geq0}b_{n}z^{n}=1+\sum_{n\geq1}\sum_{m=0}^{n-1}b_{m}b_{n-m-1}z^{n}=1+z\sum_{m,k\geq0}b_{m}b_{k}z^{m+k}=1+zB(z)^{2}, +\] + +\end_inset + +so +\begin_inset Formula $zB(z)^{2}-B(z)+1=0$ +\end_inset + + and +\begin_inset Formula $B(z)=\frac{1-\sqrt{1-4z}}{2z}$ +\end_inset + +, + where we take the negative sign as it is the one where the solution converges at +\begin_inset Formula $z=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document -- cgit v1.2.3