From 242a74fc4215d3d5e02596d38d43bb96fbc59de6 Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Mon, 3 Mar 2025 12:47:54 +0100 Subject: 3.3.3 Theoretical tests --- 3.3.3.lyx | 1370 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1370 insertions(+) create mode 100644 3.3.3.lyx (limited to '3.3.3.lyx') diff --git a/3.3.3.lyx b/3.3.3.lyx new file mode 100644 index 0000000..71fc21f --- /dev/null +++ b/3.3.3.lyx @@ -0,0 +1,1370 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Subsubsection +First Set +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[M10] +\end_layout + +\end_inset + +Express +\begin_inset Formula $x\bmod y$ +\end_inset + + in terms of the sawtooth and +\begin_inset Formula $\delta$ +\end_inset + + functions. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula $((x))-\frac{1}{2}\delta(x)=x-\lfloor x\rfloor-\frac{1}{2}$ +\end_inset + +, + so +\begin_inset Formula $\lfloor x\rfloor=x-((x))+\tfrac{1}{2}(\delta(x)-1)$ +\end_inset + +. + Therefore +\begin_inset Formula +\begin{multline*} +x\bmod y=x-y\left\lfloor \frac{x}{y}\right\rfloor =x-y\left(\frac{x}{y}-\left(\left(\frac{x}{y}\right)\right)+\frac{1}{2}\left(\delta(\tfrac{x}{y})-1\right)\right)=\\ +=\left(\left(\left(\frac{x}{y}\right)\right)+\frac{1-\delta(\frac{x}{y})}{2}\right)y. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M19] +\end_layout + +\end_inset + +If +\begin_inset Formula $m=10^{10}$ +\end_inset + +, + what is the highest possible value of +\begin_inset Formula $d$ +\end_inset + + (in the notation of Theorem P), + given that the potency of the generator is 10? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It's +\begin_inset Formula $d=2\cdot5^{10}$ +\end_inset + +. + First, + we note that +\begin_inset Formula +\[ +(2\cdot5^{10})^{9}\bmod10^{10}=2^{9}5^{90}\bmod2^{10}5^{10}=2^{9}5^{10}(5^{80}\bmod2)=m/2\neq0, +\] + +\end_inset + + and that +\begin_inset Formula $(2\cdot5^{10})^{10}\bmod10^{10}=2^{10}5^{100}\bmod2^{10}5^{10}=0$ +\end_inset + +, + so if +\begin_inset Formula $b=d$ +\end_inset + + we have potency 10. + Second, + we note that, + since +\begin_inset Formula $d\mid m$ +\end_inset + +, + and any divisor of +\begin_inset Formula $m$ +\end_inset + + greater that +\begin_inset Formula $2\cdot5^{10}$ +\end_inset + + has to be a multiple at least of +\begin_inset Formula $2^{2}$ +\end_inset + + and of +\begin_inset Formula $5^{2}$ +\end_inset + +, + and therefore of 100, + then +\begin_inset Formula $b$ +\end_inset + + would have to be a multiple of 100 and the potency would be at most 5. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc7[M24] +\end_layout + +\end_inset + +Give a proof of the reciprocity law (19), + when +\begin_inset Formula $c=0$ +\end_inset + +, + by using the general reciprocity law of exercise 1.2.4–45. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution, + obviously.) +\end_layout + +\end_inset + +In this case, + the law reduces to +\begin_inset Formula +\[ +\sigma(h,k,0)+\sigma(k,h,0)=12\sum_{0\leq jk$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{0\leq jk$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc19[M23] +\end_layout + +\end_inset + +Show that the +\emph on +serial test +\emph default + can be analyzed over the full period, + in terms of generalized Dedekind sums, + by finding a formula for the probability that +\begin_inset Formula $\alpha\leq X_{n}<\beta$ +\end_inset + + and +\begin_inset Formula $\alpha'\leq X_{n+1}<\beta'$ +\end_inset + +, + when +\begin_inset Formula $\alpha$ +\end_inset + +, + +\begin_inset Formula $\beta$ +\end_inset + +, + +\begin_inset Formula $\alpha'$ +\end_inset + +, + and +\begin_inset Formula $\beta'$ +\end_inset + + are given integers with +\begin_inset Formula $0\leq\alpha<\beta\leq m$ +\end_inset + + and +\begin_inset Formula $0\leq\alpha'<\beta'\leq m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $P(x)\coloneqq\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor $ +\end_inset + + is 1 precisely when +\begin_inset Formula $x\in[\alpha,\beta)$ +\end_inset + + and 0 for any other +\begin_inset Formula $x\in[0,1)$ +\end_inset + +. + +\begin_inset Formula $Q(x)\coloneqq\left\lfloor \frac{x-\alpha'}{m}\right\rfloor -\left\lfloor \frac{x-\beta'}{m}\right\rfloor $ +\end_inset + + works in an analogous manner. + For a linear congruential sequence given by +\begin_inset Formula $S(x)\coloneqq(ax+c)\bmod m$ +\end_inset + + that has maximum period, + the probability that +\begin_inset Formula $x_{n}\in[\alpha,\beta)\land x_{n+1}\in[\alpha',\beta')$ +\end_inset + + is +\begin_inset Formula +\[ +\frac{1}{m}\sum_{0\leq x0$ +\end_inset + +. + Then the graph for +\begin_inset Formula $\{ax+\theta\}$ +\end_inset + + is a sequence of lines. + The first goes from +\begin_inset Formula $(0,\theta)$ +\end_inset + + to +\begin_inset Formula $(\frac{1-\theta}{a},1)$ +\end_inset + +, + the next one from +\begin_inset Formula $(\frac{1-\theta}{a},0)$ +\end_inset + + to +\begin_inset Formula $(\frac{2-\theta}{a},1)$ +\end_inset + +, + etc., + and the last one goes from +\begin_inset Formula $(1-\tfrac{\theta}{a},0)$ +\end_inset + + to +\begin_inset Formula $(1,\theta)$ +\end_inset + + (we used that +\begin_inset Formula $a$ +\end_inset + + is an integer to calculate this). + Thus +\begin_inset Formula +\[ +\int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{k=1}^{a-1}\int_{\frac{k-\theta}{a}}^{\frac{k+1-\theta}{a}}x(ax+\theta-k)\text{d}x+\int_{0}^{\frac{1-\theta}{a}}x(ax+\theta)\text{d}x+\int_{1-\frac{\theta}{a}}^{1}x(ax+\theta-a)\text{d}x. +\] + +\end_inset + +Now, +\begin_inset Formula +\[ +\int x(ax+\theta-k)\text{d}x=\frac{a}{3}x^{3}+\frac{\theta-k}{2}x^{2}+C, +\] + +\end_inset + +so if we call +\begin_inset Formula $x_{k}\coloneqq\frac{k-\theta}{a}$ +\end_inset + + except that +\begin_inset Formula $x_{0}\coloneqq0$ +\end_inset + + and +\begin_inset Formula $x_{a+1}\coloneqq1$ +\end_inset + +, + we have +\begin_inset Formula +\begin{multline*} +\int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{0\leq k\leq a}\int_{x_{k}}^{x_{k+1}}x(ax+\theta-k)\text{d}x=\\ +=\sum_{0\leq k\leq a}\left(\frac{a}{3}x_{k+1}^{3}+\frac{\theta-k}{2}x_{k+1}^{2}-\frac{a}{3}x_{k}^{3}-\frac{\theta-k}{2}x_{k}^{2}\right)=\frac{a}{3}+\frac{\theta-a}{2}+\sum_{0