From 4f670b750af5c11e1eac16d9cd8556455f89f46a Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Fri, 16 May 2025 22:18:44 +0200 Subject: Changed layout for more manageable volumes --- 3.3.3.lyx | 1383 ------------------------------------------------------------- 1 file changed, 1383 deletions(-) delete mode 100644 3.3.3.lyx (limited to '3.3.3.lyx') diff --git a/3.3.3.lyx b/3.3.3.lyx deleted file mode 100644 index d03c773..0000000 --- a/3.3.3.lyx +++ /dev/null @@ -1,1383 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Subsubsection -First Set -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc1[M10] -\end_layout - -\end_inset - -Express -\begin_inset Formula $x\bmod y$ -\end_inset - - in terms of the sawtooth and -\begin_inset Formula $\delta$ -\end_inset - - functions. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We have -\begin_inset Formula $((x))-\frac{1}{2}\delta(x)=x-\lfloor x\rfloor-\frac{1}{2}$ -\end_inset - -, - so -\begin_inset Formula $\lfloor x\rfloor=x-((x))+\tfrac{1}{2}(\delta(x)-1)$ -\end_inset - -. - Therefore -\begin_inset Formula -\begin{multline*} -x\bmod y=x-y\left\lfloor \frac{x}{y}\right\rfloor =x-y\left(\frac{x}{y}-\left(\left(\frac{x}{y}\right)\right)+\frac{1}{2}\left(\delta(\tfrac{x}{y})-1\right)\right)=\\ -=\left(\left(\left(\frac{x}{y}\right)\right)+\frac{1-\delta(\frac{x}{y})}{2}\right)y. -\end{multline*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc4[M19] -\end_layout - -\end_inset - -If -\begin_inset Formula $m=10^{10}$ -\end_inset - -, - what is the highest possible value of -\begin_inset Formula $d$ -\end_inset - - (in the notation of Theorem P), - given that the potency of the generator is 10? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -It's -\begin_inset Formula $d=2\cdot5^{10}$ -\end_inset - -. - First, - we note that -\begin_inset Formula -\[ -(2\cdot5^{10})^{9}\bmod10^{10}=2^{9}5^{90}\bmod2^{10}5^{10}=2^{9}5^{10}(5^{80}\bmod2)=m/2\neq0, -\] - -\end_inset - - and that -\begin_inset Formula $(2\cdot5^{10})^{10}\bmod10^{10}=2^{10}5^{100}\bmod2^{10}5^{10}=0$ -\end_inset - -, - so if -\begin_inset Formula $b=d$ -\end_inset - - we have potency 10. - Second, - we note that, - since -\begin_inset Formula $d\mid m$ -\end_inset - -, - and any divisor of -\begin_inset Formula $m$ -\end_inset - - greater that -\begin_inset Formula $2\cdot5^{10}$ -\end_inset - - has to be a multiple at least of -\begin_inset Formula $2^{2}$ -\end_inset - - and of -\begin_inset Formula $5^{2}$ -\end_inset - -, - and therefore of 100, - then -\begin_inset Formula $b$ -\end_inset - - would have to be a multiple of 100 and the potency would be at most 5. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc7[M24] -\end_layout - -\end_inset - -Give a proof of the reciprocity law (19), - when -\begin_inset Formula $c=0$ -\end_inset - -, - by using the general reciprocity law of exercise 1.2.4–45. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Note Greyedout -status open - -\begin_layout Plain Layout -(I had to look up the solution, - obviously.) -\end_layout - -\end_inset - -In this case, - the law reduces to -\begin_inset Formula -\begin{multline*} -\sigma(h,k,0)+\sigma(k,h,0)=\\ -=12\sum_{0\leq jk$ -\end_inset - -, -\begin_inset Formula -\[ -\sum_{0\leq jk$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc19[M23] -\end_layout - -\end_inset - -Show that the -\emph on -serial test -\emph default - can be analyzed over the full period, - in terms of generalized Dedekind sums, - by finding a formula for the probability that -\begin_inset Formula $\alpha\leq X_{n}<\beta$ -\end_inset - - and -\begin_inset Formula $\alpha'\leq X_{n+1}<\beta'$ -\end_inset - -, - when -\begin_inset Formula $\alpha$ -\end_inset - -, - -\begin_inset Formula $\beta$ -\end_inset - -, - -\begin_inset Formula $\alpha'$ -\end_inset - -, - and -\begin_inset Formula $\beta'$ -\end_inset - - are given integers with -\begin_inset Formula $0\leq\alpha<\beta\leq m$ -\end_inset - - and -\begin_inset Formula $0\leq\alpha'<\beta'\leq m$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $P(x)\coloneqq\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor $ -\end_inset - - is 1 precisely when -\begin_inset Formula $x\in[\alpha,\beta)$ -\end_inset - - and 0 for any other -\begin_inset Formula $x\in[0,1)$ -\end_inset - -. - -\begin_inset Formula $Q(x)\coloneqq\left\lfloor \frac{x-\alpha'}{m}\right\rfloor -\left\lfloor \frac{x-\beta'}{m}\right\rfloor $ -\end_inset - - works in an analogous manner. - For a linear congruential sequence given by -\begin_inset Formula $S(x)\coloneqq(ax+c)\bmod m$ -\end_inset - - that has maximum period, - the probability that -\begin_inset Formula $x_{n}\in[\alpha,\beta)\land x_{n+1}\in[\alpha',\beta')$ -\end_inset - - is -\begin_inset Formula -\begin{multline*} -\frac{1}{m}\sum_{0\leq x0$ -\end_inset - -. - Then the graph for -\begin_inset Formula $\{ax+\theta\}$ -\end_inset - - is a sequence of lines. - The first goes from -\begin_inset Formula $(0,\theta)$ -\end_inset - - to -\begin_inset Formula $(\frac{1-\theta}{a},1)$ -\end_inset - -, - the next one from -\begin_inset Formula $(\frac{1-\theta}{a},0)$ -\end_inset - - to -\begin_inset Formula $(\frac{2-\theta}{a},1)$ -\end_inset - -, - etc., - and the last one goes from -\begin_inset Formula $(1-\tfrac{\theta}{a},0)$ -\end_inset - - to -\begin_inset Formula $(1,\theta)$ -\end_inset - - (we used that -\begin_inset Formula $a$ -\end_inset - - is an integer to calculate this). - Thus -\begin_inset Formula -\[ -\int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{k=1}^{a-1}\int_{\frac{k-\theta}{a}}^{\frac{k+1-\theta}{a}}x(ax+\theta-k)\text{d}x+\int_{0}^{\frac{1-\theta}{a}}x(ax+\theta)\text{d}x+\int_{1-\frac{\theta}{a}}^{1}x(ax+\theta-a)\text{d}x. -\] - -\end_inset - -Now, -\begin_inset Formula -\[ -\int x(ax+\theta-k)\text{d}x=\frac{a}{3}x^{3}+\frac{\theta-k}{2}x^{2}+C, -\] - -\end_inset - -so if we call -\begin_inset Formula $x_{k}\coloneqq\frac{k-\theta}{a}$ -\end_inset - - except that -\begin_inset Formula $x_{0}\coloneqq0$ -\end_inset - - and -\begin_inset Formula $x_{a+1}\coloneqq1$ -\end_inset - -, - we have -\begin_inset Formula -\begin{multline*} -\int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{0\leq k\leq a}\int_{x_{k}}^{x_{k+1}}x(ax+\theta-k)\text{d}x=\\ -=\sum_{0\leq k\leq a}\left(\frac{a}{3}x_{k+1}^{3}+\frac{\theta-k}{2}x_{k+1}^{2}-\frac{a}{3}x_{k}^{3}-\frac{\theta-k}{2}x_{k}^{2}\right)=\frac{a}{3}+\frac{\theta-a}{2}+\sum_{0