From b1afddfefdca80027a857627847a95fcd27992dd Mon Sep 17 00:00:00 2001 From: Juan MarĂ­n Noguera Date: Mon, 2 Dec 2024 14:20:07 +0100 Subject: Section 2.3.4.6 (bijection bt trees and triangulations) --- 2.3.4.6.lyx | 121 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-- index.lyx | 12 ++++++ 2 files changed, 130 insertions(+), 3 deletions(-) diff --git a/2.3.4.6.lyx b/2.3.4.6.lyx index 2f0c667..1373c23 100644 --- a/2.3.4.6.lyx +++ b/2.3.4.6.lyx @@ -92,17 +92,132 @@ \begin_body \begin_layout Standard -\begin_inset Note Note +\begin_inset ERT status open \begin_layout Plain Layout -TODO 1 (1p., - 0:15) + + +\backslash +rexerc1[21] +\end_layout + +\end_inset + +Find a simple one-to-one correspondence between binary trees with +\begin_inset Formula $n$ +\end_inset + + nodes and dissections of an +\begin_inset Formula $(n+2)$ +\end_inset + +-sided convex polygon into +\begin_inset Formula $n$ +\end_inset + + triangles, + assuming that the sides of the polygon are distinct. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $v_{0},\dots,v_{n+1}$ +\end_inset + + be the vertices of the polygon. + We start at the root and, + if the left subtree has +\begin_inset Formula $k$ +\end_inset + + nodes ( +\begin_inset Formula $0\leq k